- Results as:
- Print view
- Endnote (RIS)
- BibTeX
- Table: CSV | HTML
Publications
Publications
Publications
Publications
Research Mission and Profile
Molecular Signal Processing
Bioorganic Chemistry
Biochemistry of Plant Interactions
Cell and Metabolic Biology
Independent Junior Research Groups
Program Center MetaCom
Publications
Good Scientific Practice
Research Funding
Networks and Collaborative Projects
Symposia and Colloquia
Alumni Research Groups
Publications
Unspecific peroxygenases (UPOs) are fungal enzymes that attract significant attention for their ability to perform versatile oxyfunctionalization reactions using H2O2. Unlike other oxygenases, UPOs do not require additional reductive equivalents or electron transfer chains that complicate basic and applied research. Nevertheless, UPOs generally exhibit low to no heterologous production levels and only four UPO structures have been determined to date by crystallography limiting their usefulness and obstructing research. To overcome this bottleneck, we implemented a workflow that applies PROSS stability design to AlphaFold2 model structures of 10 unique and diverse UPOs followed by a signal peptide shuffling to enable heterologous production. Nine UPOs were functionally produced in Pichia pastoris, including the recalcitrant CciUPO and three UPOs derived from oomycetes the first nonfungal UPOs to be experimentally characterized. We conclude that the high accuracy and reliability of new modeling and design workflows dramatically expand the pool of enzymes for basic and applied research.
Publications
Unspecific peroxygenases (UPOs) perform oxy-functionalizations for a wide range of substrates utilizing H2O2 without the need for further reductive equivalents or electron transfer chains. Tailoring these promising enzymes toward industrial application was intensely pursued in the last decade with engineering campaigns addressing the heterologous expression, activity, stability, and improvements in chemo- and regioselectivity. One hitherto missing integral part was the targeted engineering of enantioselectivity for specific substrates with poor starting enantioselectivity. In this work, we present the engineering of the short-type MthUPO toward the enantiodivergent hydroxylation of the terpene model substrate, β-ionone. Guided by computational modeling, we designed a small smart library and screened it with a GC−MS setup. After two rounds of iterative protein evolution, the activity increased up to 17-fold and reached a regioselectivity of up to 99.6% for the 4-hydroxy-β-ionone. Enantiodivergent variants were identified with enantiomeric ratios of 96.6:3.4 (R) and 0.3:99.7 (S), respectively.
Publications
Enzymatic hydroxylation of activated and nonactivated sp3-carbons attracts keen interest from the chemistry community as it is one of the most challenging tasks in organic synthesis. Nature provides a vast number of enzymes with an enormous catalytic versatility to fulfill this task. Given that those very different enzymes have a distinct specificity in substrate scope, selectivity, activity, stability, and catalytic cycle, it is interesting to outline similarities and differences. In this Review, we intend to delineate which enzymes possess considerable advantages within specific issues. Heterologous production, crystal structure availability, enzyme engineering potential, and substrate promiscuity are essential factors for the applicability of these biocatalysts.
Publications
Unspecific peroxygenases (UPOs) enable oxyfunctionalizations of a broad substrate range with unparalleled activities. Tailoring these enzymes for chemo- and regioselective transformations represents a grand challenge due to the difficulties in their heterologous productions. Herein, we performed protein engineering in Saccharomyces cerevisiae using the MthUPO from Myceliophthora thermophila. More than 5300 transformants were screened. This protein engineering led to a significant reshaping of the active site as elucidated by computational modelling. The reshaping was responsible for the increased oxyfunctionalization activity, with improved kcat/Km values of up to 16.5-fold for the model substrate 5-nitro-1,3-benzodioxole. Moreover, variants were identified with high chemo- and regioselectivities in the oxyfunctionalization of aromatic and benzylic carbons, respectively. The benzylic hydroxylation was demonstrated to perform with enantioselectivities of up to 95% ee. The proposed evolutionary protocol and rationalization of the enhanced activities and selectivities acquired by MthUPO variants represent a step forward toward the use and implementation of UPOs in biocatalytic synthetic pathways of industrial interest.