- Results as:
- Print view
- Endnote (RIS)
- BibTeX
- Table: CSV | HTML
Publications
Publications
Publications
Publications
Publications
Publications
Publications
Publications
Publications
Publications
Research Mission and Profile
Molecular Signal Processing
Bioorganic Chemistry
Biochemistry of Plant Interactions
Cell and Metabolic Biology
Independent Junior Research Groups
Program Center MetaCom
Publications
Good Scientific Practice
Research Funding
Networks and Collaborative Projects
Symposia and Colloquia
Alumni Research Groups
Publications
Tubulysins are among the most recent antimitotic compounds to enter into antibody/peptide‐drug conjugate (ADC/PDC) development. Thus far, the design of the most promising tubulysin payloads relied on simplifying their structures, e.g., by using small tertiary amide N‐substituents (Me, Et, Pr) on tubuvaline residue. Cumbersome solution‐phase approaches are typically used for both syntheses and functionalization with cleavable linkers. p‐Aminobenzyl quaternary ammonium (PABQ) linkers were a remarkable advancement for targeted delivery, but the procedures to incorporate them into tubulysins are only of moderate efficiency. Here we describe a novel all‐on‐resin strategy permitting a loss‐free resin linkage and an improved access to super potent tubulysin analogs showing close resemblance to the natural compounds. For the first time, a protocol enables the integration of on‐resin tubulysin derivatization with, e.g., a maleimido‐Val‐Cit‐PABQ linker, which is a notable progress for the payload‐PABQ‐linker technology. The strategy also allows tubulysin diversification of the internal amide N‐substituent, thus enabling to screen a tubulysin library for the discovery of new potent analogs. This work provides ADC/PDC developers with new tools for both rapid access to new derivatives and easier linker‐attachment and functionalization.
Publications
Aetokthonotoxin has recently been identified as the cyanobacterial neurotoxin causing Vacuolar Myelinopathy, a fatal neurologic disease, spreading through a trophic cascade and affecting birds of prey such as the bald eagle in the USA. Here, we describe the total synthesis of this specialized metabolite. The complex, highly brominated 1,2’-biindole could be synthesized via a Somei-type Michael reaction as key step. The optimised sequence yielded the natural product in five steps with an overall yield of 29 %.
Publications
The multicomponent backbone N‐modification of peptides on solid‐phase is presented as a powerful and general method to enable peptide stapling at the backbone instead of the side chains. This work shows that a variety of functionalized N‐substituents suitable for backbone stapling can be readily introduced by means of on‐resin Ugi multicomponent reactions conducted during solid‐phase peptide synthesis. Diverse macrocyclization chemistries were implemented with such backbone N‐substituents, including the ring‐closing metathesis, lactamization, and thiol alkylation. The backbone N‐modification method was also applied to the synthesis of α‐helical peptides by linking N‐substituents to the peptide N‐terminus, thus featuring hydrogen‐bond surrogate structures. Overall, the strategy proves useful for peptide backbone macrocyclization approaches that show promise in peptide drug discovery.
Publications
Aiming at providing an efficient and versatile method for the diversity‐oriented decoration and ligation of fullerenes, we report the first C60 derivatization strategy based on isocyanide‐multicomponent reactions (I‐MCRs). The approach comprises the use of Passerini and Ugi reactions for assembling pseudo‐peptidic scaffolds (i.e., N‐alkylated and depsipeptides, peptoids) on carboxylic acid‐functionalized fullerenes. The method showed wide substrate scope for the oxo and isocyanide components, albeit the Ugi reaction proved efficient only for aromatic amines. The approach was successfully employed for the ligation of oligopeptides and polyethyleneglycol chains (PEG) to C60, as well as for the construction of bis‐antennary as well as PEG‐tethered dimeric fullerenes. The quantum yields for the formation of 1O2 was remarkable for the selected compounds analyzed.
Publications
Calcium (Ca2+) ions play pivotal roles as second messengers in intracellular signal transduction, and coordinate many biological processes. Changes in intracellular Ca2+ levels are perceived by Ca2+ sensors such as calmodulin (CaM) and CaM-like (CML) proteins, which transduce Ca2+ signals into cellular responses by regulation of diverse target proteins. Insights into molecular functions of CaM targets are thus essential to understand the molecular and cellular basis of Ca2+ signaling. During the last decade, IQ67-domain (IQD) proteins emerged as the largest class of CaM targets in plants with mostly unknown functions. In the March issue of Plant Physiology, we presented the first comprehensive characterization of the 33-membered IQD family in Arabidopsis thaliana. We showed, by analysis of the subcellular localization of translational green fluorescent protein (GFP) fusion proteins, that most IQD members label microtubules (MTs), and additionally often localize to the cell nucleus or to membranes, where they recruit CaM Ca2+ sensors. Important functions at MTs are supported by altered MT organization and plant growth in IQD gain-of-function lines. Because IQD proteins share structural hallmarks of scaffold proteins, we propose roles of IQDs in the assembly of macromolecular complexes to orchestrate Ca2+ CaM signaling from membranes to the nucleus. Interestingly, expression of several IQDs is regulated by auxin, which suggests functions of IQDs as hubs in cellular auxin and calcium signaling to regulate plant growth and development.
Publications
Boron's unusual properties inspired major advances in chemistry. In nature, the existence and importance of boron has been fairly explored (e.g. bacterial signaling, plant development) but its role as biological catalyst was never reported. Here, we show that boric acid [B(OH)3] can restore chloroperoxidase activity of Curvularia inaequalis recombinant apo‐haloperoxidase's (HPO) in the presence of hydrogen peroxide and chloride ions. Molecular modeling and semi‐empirical PM7 calculations support a thermodynamically highly favored (bio)catalytic mechanism similarly to vanadium haloperoxidases (V‐HPO) in which [B(OH)3] is assumedly located in apo‐HPO's active site and a monoperoxyborate [B(OH)3(OOH)−] intermediate is formed and stabilized by interaction with specific active site amino acids leading ultimately to the formation of HOCl. Thus, B(OH)3−HPO provides the first evidence towards the future exploitation of boron′s role in biological systems.
Publications
Expression takes place for most of the jasmonic acid (JA)-induced genes in a COI1-dependent manner via perception of its conjugate JA-Ile in the SCFCOI1-JAZ co-receptor complex. There are, however, numerous genes and processes, which are preferentially induced COI1-independently by the precursor of JA, 12-oxo-phytodienoic acid (OPDA). After recent identification of the Ile-conjugate of OPDA, OPDA-Ile, biological activity of this compound could be unequivocally proven in terms of gene expression. Any interference of OPDA, JA, or JA-Ile in OPDA-Ile-induced gene expression could be excluded by using different genetic background. The data suggest individual signaling properties of OPDA-Ile. Future studies for analysis of an SCFCOI1-JAZ co-receptor-independent route of signaling are proposed.
Publications
AvrRpt2 is one of the first Pseudomonas syringae effector proteins demonstrated to be delivered into host cells. It suppresses plant immunity by modulating auxin signaling and cleavage of the membrane-localized defense regulator RIN4. We recently uncovered a novel potential virulence function of AvrRpt2, where it specifically blocked activation of mitogen-activated protein kinases, MPK4 and MPK11, but not of MPK3 and MPK6. Putative AvrRpt2 homologs from different phytopathogens and plant-associated bacteria showed distinct activities with respect to MPK4/11 activation suppression and RIN4 cleavage. Apart from differences in sequence similarity, 3 of the analyzed homologs were apparently “truncated.” To examine the role of the AvrRpt2 N-terminus, we modeled the structures of these AvrRpt2 homologs and performed deletion and domain swap experiments. Our results strengthen the finding that RIN4 cleavage is irrelevant for the ability to suppress defense-related MPK4/11 activation and indicate that full protease activity or cleavage specificity is affected by the N-terminus.
Publications
Constraining small peptides into specific secondary structures has been a major challenge in peptide ligand design. So far, the major solution for decreasing the conformational flexibility in small peptides has been cyclization. An alternative is the use of topological templates, which are able to induce and/or stabilize peptide secondary structures by means of covalent attachment to the peptide. Herein a multicomponent strategy and structural analysis of a new type of peptidosteroid architecture having the steroid as N‐substituent of an internal amide bond is reported. The approach comprises the one‐pot conjugation of two peptide chains (or amino acid derivatives) to aminosteroids by means of the Ugi reaction to give a unique family of N‐steroidal peptides. The conjugation efficiency of a variety of peptide sequences and steroidal amines, as well as their consecutive head‐to‐tail cyclization to produce chimeric cyclopeptide–steroid conjugates, that is, macrocyclic lipopeptides, was assessed. Determination of the three‐dimensional structure of an acyclic N‐steroidal peptide in solution proved that the bulky, rigid steroidal template is capable of both increasing significantly the conformational rigidity, even in a peptide sequence as short as five amino acid residues, and inducing a β‐turn secondary structure even in the all‐s‐trans isomer. This report provides the first evidence of the steroid skeleton as β‐turn inducer in linear peptide sequences.
Publications
Out of the 34 members of the VQ-motif-containing protein (VQP) family, 10 are phosphorylated by the mitogen-activated protein kinases (MAPKs), MPK3 and MPK6. Most of these MPK3/6-targeted VQPs (MVQs) interacted with specific sub-groups of WRKY transcription factors in a VQ-motif-dependent manner. In some cases, the MAPK appears to phosphorylate either the MVQ or the WRKY, while in other cases, both proteins have been reported to act as MAPK substrates. We propose a network of dynamic interactions between members from the MAPK, MVQ and WRKY families – either as binary or as tripartite interactions. The compositions of the WRKY-MVQ transcriptional protein complexes may change – for instance, through MPK3/6-mediated modulation of protein stability – and therefore control defense gene transcription.