logo ipb
logo ipb mobile
x
  • Deutsch
  • English
Benutzeranmeldung
  • Research
    • Research Mission and Profile

    • Molecular Signal Processing

      • Secretariat & All Staff
      • Technical Resources
      • Publications
      • Research Groups
        • Nutrient Sensing
          • Projects
          • Staff
          • Publications
          • Collaborations
        • Symbiosis Signaling
          • Projects
          • Staff
          • Publications
          • Collaborations
        • Jasmonate Signaling
          • Projects
          • Staff
          • Publications
          • Collaborations
    • Bioorganic Chemistry

      • Secretariat & All Staff
      • Technical Resources
      • Publications
      • Research Groups
        • Bioactives
          • Projects
          • Staff
          • Publications
          • Collaborations
        • Natural Products & Metabolomics
          • Projects
          • Staff
          • Publications
          • Collaborations
        • Biotechnology
          • Projects
          • Staff
          • Publications
          • Collaborations
        • Biofunctional Synthesis
          • Projects
          • Staff
          • Publications
          • Collaborations
        • Computational Chemistry
          • Projects
          • Staff
          • Publications
          • Collaborations
        • Data & Resources
          • Projects
          • Staff
          • Publications
          • Collaborations
    • Biochemistry of Plant Interactions

      • Secretariat & All Staff
      • Technical Resources
      • Publications
      • Research Groups
        • Calcium-dependent Protein Kinases
          • Projects
          • Staff
          • Publications
          • Collaborations
        • Cellular Signaling
          • Projects
          • Staff
          • Publications
          • Collaborations
        • Metabolite-based Defense Mechanisms
          • Projects
          • Staff
          • Publications
          • Collaborations
        • Nuclear Processes in Plant Defense
          • Projects
          • Staff
          • Publications
          • Collaborations
    • Cell and Metabolic Biology

      • Secretariat & All Staff
      • Technical Resources
      • Publications
      • Research Groups
        • Glandular Trichomes and Isoprenoid Biosynthesis
          • Projects
          • Staff
          • Publications
          • Collaborations
        • Jasmonate Function & Mycorrhiza
          • Projects
          • Staff
          • Publications
          • Collaborations
        • Phenylpropanoid Metabolism
          • Projects
          • Staff
          • Publications
          • Collaborations
        • Synthetic Biology
          • Projects
          • Staff
          • Publications
          • Collaborations
    • Independent Junior Research Groups

      • Research Groups
        • Receptor Biochemistry
          • Projects
          • Staff
          • Publications
          • Collaborations
    • Program Center MetaCom

      • Secretariat & All staff
      • Publikationen
      • Our Equipment
      • Research Groups
        • Metabolomics Facility
          • Projects
          • Staff
          • Publications
          • Methods
        • MetaCom Analytical Laboratory
          • Projects
          • Staff
          • Publications
          • Methods
        • Computational Plant Biochemistry
          • Projects
          • Staff
          • Publications
          • Collaborations
        • MetaCom Junior Research Group
          • Projects
          • Staff
    • Publications

    • Good Scientific Practice

    • Research Funding

    • Networks and Collaborative Projects

      • Collaborative Projects as Coordinator
        • Completed Projects as Coordinator
      • Collaborative Projects as Partner
        • Completed Projects as Partner
      • Networks
    • Symposia and Colloquia

      • Lectures
        • IPB Seminars
      • Leibniz Plant Biochemistry Symposia
    • Alumni Research Groups

      • Research Groups
        • Auxin Signaling
          • Projects
          • Publications
        • Bioorganic Chemistry
          • Projects
          • Publications
        • Designer Glycans
          • Projects
          • Publications
        • Jasmonate Mode of Action
          • Publications
        • Protein Recognition and Degradation
          • Projects
          • Publications
        • Regulatory RNAs (MLU-associated group)
          • Projects
          • Publications
        • Signal Integration
          • Projects
          • Publications
        • Ubiquitination in Immunity
          • Projects
          • Publications
        • Cellular Coordination
          • Projects
          • Publications
  • Infrastructure
    • Databases and Tools

      • XCMS
      • Rdisop
      • CAMERA
      • MetShot
      • MassBank
      • MetFrag
      • MetFamily
      • PaCeQuant
      • CytoskeletonAnalyzer
      • GoldenMutagenesis
      • cisHighlight
      • FlagScreen
      • RootDetection
    • Technical Resources

    • Imaging Unit

    • Greenhouses and Phytochambers

    • Library Services

      • OPAC
      • Electronic Journals Library
      • Service for Employees
  • Institute
    • Organizational Chart

    • Management and Boards

      • Board of Trustees
      • Scientific Advisory Board
      • IPB Management / Board of Directors
      • Scientific Council
      • Authorized Representatives of the IPB
      • Staff Council
      • Statutes
    • Administration and Infrastructure

      • Secretariat & All Staff
      • Working Groups
        • Human Resources
        • Finance & Accounting
        • Purchasing
        • IT & Technical Support
        • Experimental Nursery
        • Facility Management
        • Library
        • Digitalization
    • Energy Management

      • Objectives and Measures
      • Energy Management Team
    • Diversity, Family, Equality

      • Diversity
      • Equality
      • Family Support
      • Training and further Education
      • Integration and Health
      • General Equal Treatment Act
    • Public Tendering

    • Patents and Licensing

    • The IPB Welcoming Culture

    • Guest Houses

    • IPB Site Map

    • Brief IPB History

      • Bildergalerie zur Historie
      • Alte Filmsequenzen zum Institut
      • Historischer Massenspektrograph
    • Alumni Network

      • The IPB as a career launching pad
  • Career
    • Data protection information for applicants

    • PhD Program

      • PhD Student Representatives
      • DoCou - Doctoral Training Courses
      • PSSC
    • Postdocs

    • Berufsausbildung

  • Public Relations
    • News

      • 2024
      • 2023
      • 2022
      • Archiv Aktuelles
        • 2021
        • 2020
        • 2019
        • 2018
        • 2017
        • 2016
        • 2015
        • 2014
        • vor 2014
    • News Ticker Science

      • News Ticker 2024
      • News Ticker 2023
      • News Ticker 2022
      • News Ticker Archive
        • News Ticker 2021
        • News Ticker 2020
        • News Ticker 2019
    • Press Releases

      • 2024
      • 2023
      • 2022
      • Archive Press Releases
        • 2021
        • 2020
        • 2019
        • 2018
        • 2017
        • 2016
        • 2015
        • 2014
        • 2013
        • 2012
        • 2011
        • 2010
        • 2009
        • 2008
        • 2007
        • 2006
        • 2005
        • 2004
        • 2003
        • 2002
    • IPB Pressespiegel

    • LANGE NACHT, DIE WISSEN SCHAFFT: PROGRAMM

    • IPB Newsletter

    • Printed / Information Material

    • Scientific Reports / Research Highlights

    • Events

      • 2024 Long Night of Sciences
      • 2024 Leibniz Plant Biochemistry Symposium
      • Archiv Veranstaltungen
    • Cover Art

    • Citizen Science: Pilzberatung

      • Das Reich der Pilze
      • Pilzberatung
      • Forschung an Pilzen
  • Contact
    • Directions for Visitors

    • Staff Directory

    • Imprint

    • Data Protection

    • Accessibility

  1. IPB Halle
  2. Research
  3. Publications

    • Research Mission and Profile
    • Trenner 0
    • Molecular Signal Processing
      • Secretariat & All Staff
      • Technical Resources
      • Publications
      • Research Groups
        • Nutrient Sensing
        • Symbiosis Signaling
        • Jasmonate Signaling
    • Bioorganic Chemistry
      • Secretariat & All Staff
      • Technical Resources
      • Publications
      • Research Groups
        • Bioactives
        • Natural Products & Metabolomics
        • Biotechnology
        • Biofunctional Synthesis
        • Computational Chemistry
        • Data & Resources
    • Biochemistry of Plant Interactions
      • Secretariat & All Staff
      • Technical Resources
      • Publications
      • Research Groups
        • Calcium-dependent Protein Kinases
        • Cellular Signaling
        • Metabolite-based Defense Mechanisms
        • Nuclear Processes in Plant Defense
    • Cell and Metabolic Biology
      • Secretariat & All Staff
      • Technical Resources
      • Publications
      • Research Groups
        • Glandular Trichomes and Isoprenoid Biosynthesis
        • Jasmonate Function & Mycorrhiza
        • Phenylpropanoid Metabolism
        • Synthetic Biology
    • Independent Junior Research Groups
      • Research Groups
        • Receptor Biochemistry
    • Program Center MetaCom
      • Secretariat & All staff
      • Publikationen
      • Our Equipment
      • Research Groups
        • Metabolomics Facility
        • MetaCom Analytical Laboratory
        • Computational Plant Biochemistry
        • MetaCom Junior Research Group
    • Trenner 1
    • Publications
    • Good Scientific Practice
    • Research Funding
    • Trenner
    • Networks and Collaborative Projects
      • Collaborative Projects as Coordinator
        • Completed Projects as Coordinator
      • Collaborative Projects as Partner
        • Completed Projects as Partner
      • Networks
    • Symposia and Colloquia
      • Lectures
        • IPB Seminars
      • Leibniz Plant Biochemistry Symposia
    • Trenner
    • Alumni Research Groups
      • Research Groups
        • Auxin Signaling
        • Bioorganic Chemistry
        • Designer Glycans
        • Jasmonate Mode of Action
        • Protein Recognition and Degradation
        • Regulatory RNAs (MLU-associated group)
        • Signal Integration
        • Ubiquitination in Immunity
        • Cellular Coordination

Advanced Search

  • Type of publication
    • Publication (16)
  • Year
    • 1993 (1)
      1998 (1)
      1999 (1)
      2000 (1)
      2002 (1)
      2005 (1)
      2008 (1)
      2011 (1)
      2012 (1)
      2014 (1)
      2016 (1)
      2017 (1)
      2018 (2)
      2023 (1)
      2024 (1)
  • Journal / Volume / Preprint Server Sorted by frequency and by alphabetical order
    • Phytochemistry (132)
      Plant J. (95)
      Plant Physiol. (94)
      0 (84)
      Plant Cell (55)
      Planta (54)
      bioRxiv (51)
      New Phytol. (50)
      Methods Mol. Biol. (41)
      Front. Plant Sci. (40)
      Int. J. Mol. Sci. (33)
      J. Biol. Chem. (33)
      J. Exp. Bot. (33)
      PLOS ONE (30)
      FEBS Lett. (29)
      Molecules (28)
      Vietnam J. Chem. (26)
      Proc. Natl. Acad. Sci. U.S.A. (25)
      Angew. Chem. Int. Ed. (22)
      J. Plant Physiol. (21)
      Angew. Chem. (18)
      Tetrahedron Lett. (18)
      Trends Plant Sci. (18)
      Plant Cell Physiol. (17)
      Sci. Rep. (17)
      Metabolomics (16)
      Mol. Plant Microbe Interact. (16)
      ChemBioChem (15)
      Plants (15)
      Anal. Bioanal. Chem. (14)
      BMC Plant Biol. (14)
      J. Agr. Food Chem. (14)
      J. Org. Chem. (14)
      Nat. Prod. Commun. (14)
      Plant Signal Behav. (14)
      Plant Cell Environ. (13)
      Plant Mol. Biol. (13)
      Adv. Exp. Med. Biol. (12)
      Anal. Chem. (12)
      Biochem. Syst. Ecol. (12)
      Chem. Commun. (12)
      Curr. Biol. (12)
      Curr. Opin. Plant Biol. (12)
      Food Chem. (12)
      J. Nat. Prod. (12)
      Metabolites (12)
      Org. Biomol. Chem. (12)
      Synthesis (12)
      Biol. Chem. (11)
      Eur. J. Org. Chem. (11)
      Nat. Commun. (11)
      Planta Med. (11)
      Tetrahedron (11)
      BMC Bioinformatics (10)
      J. Cheminform. (10)
      J. Mass Spectrom. (10)
      Nat. Prod. Res. (10)
      Eur. J. Med. Chem. (9)
      Mol. Plant (9)
      Synlett (9)
      Z. Naturforsch. C (9)
      Beilstein J. Org. Chem. (8)
      ChemCatChem (8)
      Fitoterapia (8)
      J. Proteome Res. (8)
      Mol. Plant Pathol. (8)
      Mycorrhiza (8)
      Phytochem. Anal. (8)
      Plant Biotechnol. J. (8)
      Proteomics (8)
      Theor. Appl. Genet. (8)
      Amino Acids (7)
      Chem.-Eur. J. (7)
      Org. Lett. (7)
      Pharmazie (7)
      Plant Growth Regul. (7)
      Plant Sci. (7)
      ACS Catal. (6)
      BIOspektrum (6)
      Bio Protoc. (6)
      Biochimie (6)
      Biomolecules (6)
      Chem. Biodivers. (6)
      Dalton Trans. (6)
      EMBO J. (6)
      Eur. J. Biochem. (6)
      J. Inorg. Biochem. (6)
      J. Med. Chem. (6)
      J. Pharm. Biomed. Anal. (6)
      Nat. Chem. Biol. (6)
      Nat. Plants (6)
      PLOS Pathog. (6)
      Physiol. Plant. (6)
      Plant Biol. (6)
      Plant Cell Tiss. Organ Cult. (6)
      RSC Adv. (6)
      Science (6)
      ACS Chem. Biol. (5)
      Anal. Biochem. (5)
      Biologie in unserer Zeit (5)
  • Author Sorted by frequency and by alphabetical order
    • Porzel, A. (5)
      Hoehenwarter, W. (4)
      Schmidt, J. (4)
      Farag, M. A. (3)
      Wessjohann, L. A. (3)
      Bandeira, N. (2)
      Binz, P.-A. (2)
      Deutsch, E. W. (2)
      Lam, H. (2)
      Majovsky, P. (2)
      Mendoza, L. (2)
      Meyer, A. (2)
      Neumann, S. (2)
      Perez-Riverol, Y. (2)
      Schneider, G. (2)
      Shofstahl, J. (2)
      Vizcaíno, J. A. (2)
      Walzer, M. (2)
      Westphal, H. (2)
      Abel, S. (1)
      Adam, G. (1)
      Al Shweiki, M. R. (1)
      Al-Hammady, M. A. (1)
      Ali, S. E. (1)
      Arnold, N. (1)
      Baumert, A. (1)
      Bittremieux, W. (1)
      Böcker, S. (1)
      Carver, J. (1)
      Chalkley, R. J. (1)
      Chen, K. (1)
      Chen, Y. (1)
      Delanghe, B. (1)
      Dissmeyer, N. (1)
      Dorfer, V. (1)
      Dowsey, A. W. (1)
      Egelhofer, V. (1)
      Fuchs, P. (1)
      Gabriels, R. (1)
      Giavalisco, P. (1)
      Griss, J. (1)
      Grubb, C. D. (1)
      Gröger, D. (1)
      Hegazy, M.-E. F. (1)
      Hermjakob, H. (1)
      Hoffmann, N. (1)
      Hummel, J. (1)
      Huth, M. (1)
      Jehmlich, N. (1)
      Jones, A. R. (1)
      Kawano, S. (1)
      Klein, J. (1)
      Koch, M. (1)
      Kramell, R. (1)
      Kuhnt, C. (1)
      Kuster, B. (1)
      Käll, L. (1)
      Larhlimi, A. (1)
      Lassowskat, I. (1)
      Lee, C.-W. (1)
      Licata, L. (1)
      Lin, J. (1)
      Liu, P. (1)
      Liu, S. (1)
      Lübken, T. (1)
      Mak, T. D. (1)
      Miersch, O. (1)
      Mohamed, T. A. (1)
      Mönchgesang, S. (1)
      Naumann, C. (1)
      Noleto‐Dias, C. (1)
      Orchard, S. E. (1)
      Pullman, B. (1)
      Quaglia, F. (1)
      Ricard-Blum, S. (1)
      Röst, H. (1)
      Sachsenberg, T. (1)
      Salek, R. M. (1)
      Salem, M. A. (1)
      Schliemann, W. (1)
      Schymanski, E. L. (1)
      Selbig, J. (1)
      Strack, D. (1)
      Sun, Z. (1)
      Tabb, D. L. (1)
      Tate, S. (1)
      Tavares, J. F. (1)
      Teichert, A. (1)
      Thieme, D. (1)
      Tosatto, S. C. E. (1)
      Trujillo, M. (1)
      Trutschel, D. (1)
      Van Den Bossche, T. (1)
      Vissers, J. P. C. (1)
      Volders, P.-J. (1)
      Wang, A. Y. (1)
      Wang, Q. (1)
      Weckwerth, W. (1)
      Wessjohann, L. (1)
      Wienkoop, S. (1)
  • Year
  • Type of publication
Search narrowed by: Journal / Volume / Preprint Server Sorted by frequency and by alphabetical order: J. Proteome Res. Journal / Volume / Preprint Server Sorted by frequency and by alphabetical order: Phytochem. Anal. Remove all filters
Displaying results 1 to 10 of 16.
  • Results as:
  • Print view
  • Endnote (RIS)
  • BibTeX
  • Table: CSV | HTML
Results per page:
  • 1
  • 2

Publications

Noleto‐Dias, C.; Farag, M. A.; Porzel, A.; Tavares, J. F.; Wessjohann, L. A.; A multiplex approach of MS, 1D‐, and 2D‐NMR metabolomics in plant ontogeny: A case study on Clusia minor L. organs (leaf, flower, fruit, and seed) Phytochem. Anal. 35 445-468 (2024) DOI: 10.1002/pca.3300
  • Abstract
  • Internet
  • BibText
  • RIS

Introduction: The genus Clusia L. is mostly recognised for the production of prenylated benzophenones and tocotrienol derivatives.Objectives: The objective of this study was to map metabolome variation within Clusia minor organs at different developmental stages.Material and Methods: In total 15 organs/stages (leaf, flower, fruit, and seed) were analysed by UPLC‐MS and 1H‐ and heteronuclear multiple‐bond correlation (HMBC)‐NMR‐based metabolomics.Results: This work led to the assignment of 46 metabolites, belonging to organic acids(1), sugars(2) phenolic acids(1), flavonoids(3) prenylated xanthones(1) benzophenones(4) and tocotrienols(2). Multivariate data analyses explained the variability and classification of samples, highlighting chemical markers that discriminate each organ/stage. Leaves were found to be rich in 5‐hydroxy‐8‐methyltocotrienol (8.5 μg/mg f.w.), while flowers were abundant in the polyprenylated benzophenone nemorosone with maximum level detected in the fully mature flower bud (43 μg/mg f.w.). Nemorosone and 5‐hydroxy tocotrienoloic acid were isolated from FL6 for full structural characterisation. This is the first report of the NMR assignments of 5‐hydroxy tocotrienoloic acid, and its maximum level was detected in the mature fruit at 50 μg/mg f.w. Seeds as typical storage organ were rich in sugars and omega‐6 fatty acids.Conclusion: To the best of our knowledge, this is the first report on a comparative 1D‐/2D‐NMR approach to assess compositional differences in ontogeny studies compared with LC‐MS exemplified by Clusia organs. Results derived from this study provide better understanding of the stages at which maximal production of natural compounds occur and elucidate in which developmental stages the enzymes responsible for the production of such metabolites are preferentially expressed.

Publications

Deutsch, E. W.; Vizcaíno, J. A.; Jones, A. R.; Binz, P.-A.; Lam, H.; Klein, J.; Bittremieux, W.; Perez-Riverol, Y.; Tabb, D. L.; Walzer, M.; Ricard-Blum, S.; Hermjakob, H.; Neumann, S.; Mak, T. D.; Kawano, S.; Mendoza, L.; Van Den Bossche, T.; Gabriels, R.; Bandeira, N.; Carver, J.; Pullman, B.; Sun, Z.; Hoffmann, N.; Shofstahl, J.; Zhu, Y.; Licata, L.; Quaglia, F.; Tosatto, S. C. E.; Orchard, S. E.; Proteomics standards initiative at twenty years: Current activities and future work J. Proteome Res. 22 287-301 (2023) DOI: 10.1021/acs.jproteome.2c00637
  • Abstract
  • Internet
  • BibText
  • RIS

The Human Proteome Organization (HUPO) Proteomics Standards Initiative (PSI) has been successfully developing guidelines, data formats, and controlled vocabularies (CVs) for the proteomics community and other fields supported by mass spectrometry since its inception 20 years ago. Here we describe the general operation of the PSI, including its leadership, working groups, yearly workshops, and the document process by which proposals are thoroughly and publicly reviewed in order to be ratified as PSI standards. We briefly describe the current state of the many existing PSI standards, some of which remain the same as when originally developed, some of which have undergone subsequent revisions, and some of which have become obsolete. Then the set of proposals currently being developed are described, with an open call to the community for participation in the forging of the next generation of standards. Finally, we describe some synergies and collaborations with other organizations and look to the future in how the PSI will continue to promote the open sharing of data and thus accelerate the progress of the field of proteomics.

Publications

Farag, M. A.; Meyer, A.; Ali, S. E.; Salem, M. A.; Giavalisco, P.; Westphal, H.; Wessjohann, L. A.; Comparative Metabolomics Approach Detects Stress-Specific Responses during Coral Bleaching in Soft Corals J. Proteome Res. 17 2060-2071 (2018) DOI: 10.1021/acs.jproteome.7b00929
  • Abstract
  • BibText
  • RIS

Chronic exposure to ocean acidification and elevated sea-surface temperatures pose significant stress to marine ecosystems. This in turn necessitates costly acclimation responses in corals in both the symbiont and host, with a reorganization of cell metabolism and structure. A large-scale untargeted metabolomics approach comprising gas chromatography mass spectrometry (GC–MS) and ultraperformance liquid chromatography coupled to high resolution mass spectrometry (UPLC–MS) was applied to profile the metabolite composition of the soft coral Sarcophyton ehrenbergi and its dinoflagellate symbiont. Metabolite profiling compared ambient conditions with response to simulated climate change stressors and with the sister species, S. glaucum. Among ∼300 monitored metabolites, 13 metabolites were modulated. Incubation experiments providing four selected upregulated metabolites (alanine, GABA, nicotinic acid, and proline) in the culturing water failed to subside the bleaching response at temperature-induced stress, despite their known ability to mitigate heat stress in plants or animals. Thus, the results hint to metabolite accumulation (marker) during heat stress. This study provides the first detailed map of metabolic pathways transition in corals in response to different environmental stresses, accounting for the superior thermal tolerance of S. ehrenbergi versus S. glaucum, which can ultimately help maintain a viable symbiosis and mitigate against coral bleaching.

Publications

Deutsch, E. W.; Perez-Riverol, Y.; Chalkley, R. J.; Wilhelm, M.; Tate, S.; Sachsenberg, T.; Walzer, M.; Käll, L.; Delanghe, B.; Böcker, S.; Schymanski, E. L.; Wilmes, P.; Dorfer, V.; Kuster, B.; Volders, P.-J.; Jehmlich, N.; Vissers, J. P. C.; Wolan, D. W.; Wang, A. Y.; Mendoza, L.; Shofstahl, J.; Dowsey, A. W.; Griss, J.; Salek, R. M.; Neumann, S.; Binz, P.-A.; Lam, H.; Vizcaíno, J. A.; Bandeira, N.; Röst, H.; Expanding the Use of Spectral Libraries in Proteomics J. Proteome Res. 17 4051-4060 (2018) DOI: 10.1021/acs.jproteome.8b00485
  • Abstract
  • BibText
  • RIS

The 2017 Dagstuhl Seminar on Computational Proteomics provided an opportunity for a broad discussion on the current state and future directions of the generation and use of peptide tandem mass spectrometry spectral libraries. Their use in proteomics is growing slowly, but there are multiple challenges in the field that must be addressed to further increase the adoption of spectral libraries and related techniques. The primary bottlenecks are the paucity of high quality and comprehensive libraries and the general difficulty of adopting spectral library searching into existing workflows. There are several existing spectral library formats, but none captures a satisfactory level of metadata; therefore, a logical next improvement is to design a more advanced, Proteomics Standards Initiative-approved spectral library format that can encode all of the desired metadata. The group discussed a series of metadata requirements organized into three designations of completeness or quality, tentatively dubbed bronze, silver, and gold. The metadata can be organized at four different levels of granularity: at the collection (library) level, at the individual entry (peptide ion) level, at the peak (fragment ion) level, and at the peak annotation level. Strategies for encoding mass modifications in a consistent manner and the requirement for encoding high-quality and commonly seen but as-yet-unidentified spectra were discussed. The group also discussed related topics, including strategies for comparing two spectra, techniques for generating representative spectra for a library, approaches for selection of optimal signature ions for targeted workflows, and issues surrounding the merging of two or more libraries into one. We present here a review of this field and the challenges that the community must address in order to accelerate the adoption of spectral libraries in routine analysis of proteomics datasets.

Publications

Al Shweiki, M. R.; Mönchgesang, S.; Majovsky, P.; Thieme, D.; Trutschel, D.; Hoehenwarter, W.; Assessment of Label-Free Quantification in Discovery Proteomics and Impact of Technological Factors and Natural Variability of Protein Abundance J. Proteome Res. 16 1410-1424 (2017) DOI: 10.1021/acs.jproteome.6b00645
  • Abstract
  • BibText
  • RIS

We evaluated the state of label-free discovery proteomics focusing especially on technological contributions and contributions of naturally occurring differences in protein abundance to the intersample variability in protein abundance estimates in this highly peptide-centric technology. First, the performance of popular quantitative proteomics software, Proteome Discoverer, Scaffold, MaxQuant, and Progenesis QIP, was benchmarked using their default parameters and some modified settings. Beyond this, the intersample variability in protein abundance estimates was decomposed into variability introduced by the entire technology itself and variable protein amounts inherent to individual plants of the Arabidopsis thaliana Col-0 accession. The technical component was considerably higher than the biological intersample variability, suggesting an effect on the degree and validity of reported biological changes in protein abundance. Surprisingly, the biological variability, protein abundance estimates, and protein fold changes were recorded differently by the software used to quantify the proteins, warranting caution in the comparison of discovery proteomics results. As expected, ∼99% of the proteome was invariant in the isogenic plants in the absence of environmental factors; however, few proteins showed substantial quantitative variability. This naturally occurring variation between individual organisms can have an impact on the causality of reported protein fold changes.

Publications

Farag, M. A.; Porzel, A.; Al-Hammady, M. A.; Hegazy, M.-E. F.; Meyer, A.; Mohamed, T. A.; Westphal, H.; Wessjohann, L. A.; Soft Corals Biodiversity in the Egyptian Red Sea: A Comparative MS and NMR Metabolomics Approach of Wild and Aquarium Grown Species J. Proteome Res. 15 1274-1287 (2016) DOI: 10.1021/acs.jproteome.6b00002
  • Abstract
  • BibText
  • RIS

Marine life has developed unique metabolic and physiologic capabilities and advanced symbiotic relationships to survive in the varied and complex marine ecosystems. Herein, metabolite composition of the soft coral genus Sarcophyton was profiled with respect to its species and different habitats along the coastal Egyptian Red Sea via 1H NMR and ultra performance liquid chromatography-mass spectrometry (UPLC–MS) large-scale metabolomics analyses. The current study extends the application of comparative secondary metabolite profiling from plants to corals revealing for metabolite compositional differences among its species via a comparative MS and NMR approach. This was applied for the first time to investigate the metabolism of 16 Sarcophyton species in the context of their genetic diversity or growth habitat. Under optimized conditions, we were able to simultaneously identify 120 metabolites including 65 diterpenes, 8 sesquiterpenes, 18 sterols, and 15 oxylipids. Principal component analysis (PCA) and orthogonal projection to latent structures-discriminant analysis (OPLS) were used to define both similarities and differences among samples. For a compound based classification of coral species, UPLC–MS was found to be more effective than NMR. The main differentiations emanate from cembranoids and oxylipids. The specific metabolites that contribute to discrimination between soft corals of S. ehrenbergi from the three different growing habitats also belonged to cembrane type diterpenes, with aquarium S. ehrenbergi corals being less enriched in cembranoids compared to sea corals. PCA using either NMR or UPLC–MS data sets was found equally effective in predicting the species origin of unknown Sarcophyton. Cyclopropane containing sterols observed in abundance in corals may act as cellular membrane protectant against the action of coral toxins, that is, cembranoids.

Publications

Majovsky, P.; Naumann, C.; Lee, C.-W.; Lassowskat, I.; Trujillo, M.; Dissmeyer, N.; Hoehenwarter, W.; Targeted Proteomics Analysis of Protein Degradation in Plant Signaling on an LTQ-Orbitrap Mass Spectrometer J. Proteome Res. 13 4246-4258 (2014) DOI: 10.1021/pr500164j
  • Abstract
  • BibText
  • RIS

Targeted proteomics has become increasingly popular recently because of its ability to precisely quantify selected proteins in complex cellular backgrounds. Here, we demonstrated the utility of an LTQ-Orbitrap Velos Pro mass spectrometer in targeted parallel reaction monitoring (PRM) despite its unconventional dual ion trap configuration. We evaluated absolute specificity (>99%) and sensitivity (100 amol on column in 1 μg of total cellular extract) using full and mass range scans as survey scans together with data-dependent (DDA) and targeted MS/MS acquisition. The instrument duty cycle was a critical parameter limiting sensitivity, necessitating peptide retention time scheduling. We assessed synthetic peptide and recombinant peptide standards to predict or experimentally determine target peptide retention times. We applied optimized PRM to protein degradation in signaling regulation, an area that is receiving increased attention in plant physiology. We quantified relative abundance of selected proteins in plants that are mutant for enzymatic components of the N-end rule degradation (NERD) pathway such as the two tRNA-arginyl-transferases ATE1 and ATE2 and the two E3 ubiquitin ligases PROTEOLYSIS1 and 6. We found a number of upregulated proteins, which might represent degradation targets. We also targeted FLAGELLIN SENSITIVE2 (FLS2), a pattern recognition receptor responsible for pathogen sensing, in ubiquitin ligase mutants to assay the attenuation of plant immunity by degradation of the receptor.

Publications

Chen, Y.; Liu, P.; Hoehenwarter, W.; Lin, J.; Proteomic and Phosphoproteomic Analysis of Picea wilsonii Pollen Development under Nutrient Limitation J. Proteome Res. 11 4180-4190 (2012) DOI: 10.1021/pr300295m
  • Abstract
  • BibText
  • RIS

The pollen tube is a tip-growing system that delivers sperm to the ovule and thus is essential for sexual plant reproduction. Sucrose and other microelements act as nutrients and signaling molecules through pathways that are not yet fully understood. Taking advantage of high-throughput liquid chromatography coupled to mass spectrometry (LC-MS), we performed a label-free shotgun proteomic analysis of pollen in response to nutrient limitation using mass accuracy precursor alignment. We compared 168 LC-MS analyses and more than 1 million precursor ions and could define the proteomic phenotypes of pollen under different conditions. In total, 166 proteins and 42 phosphoproteins were identified as differentially regulated. These proteins are involved in a variety of signaling pathways, providing new insights into the multifaceted mechanism of nutrient function. The phosphorylation of proteins involved in cytoskeleton dynamics was found to be specifically responsive to Ca2+ and sucrose deficiency, suggesting that sucrose and extracellular Ca2+ influx are necessary for the maintenance of cytoskeleton polymerization. Sucrose limitation leads to widespread accumulation of proteins involved in carbohydrate metabolism and protein degradation. This highlights the wide range of metabolic and cellular processes that are modulated by sucrose but complicates dissection of the signaling pathways.

Publications

Hoehenwarter, W.; Larhlimi, A.; Hummel, J.; Egelhofer, V.; Selbig, J.; van Dongen, J. T.; Wienkoop, S.; Weckwerth, W.; MAPA Distinguishes Genotype-Specific Variability of Highly Similar Regulatory Protein Isoforms in Potato Tuber J. Proteome Res. 10 2979-2991 (2011) DOI: 10.1021/pr101109a
  • Abstract
  • BibText
  • RIS

Mass Accuracy Precursor Alignment is a fast and flexible method for comparative proteome analysis that allows the comparison of unprecedented numbers of shotgun proteomics analyses on a personal computer in a matter of hours. We compared 183 LC–MS analyses and more than 2 million MS/MS spectra and could define and separate the proteomic phenotypes of field grown tubers of 12 tetraploid cultivars of the crop plant Solanum tuberosum. Protein isoforms of patatin as well as other major gene families such as lipoxygenase and cysteine protease inhibitor that regulate tuber development were found to be the primary source of variability between the cultivars. This suggests that differentially expressed protein isoforms modulate genotype specific tuber development and the plant phenotype. We properly assigned the measured abundance of tryptic peptides to different protein isoforms that share extensive stretches of primary structure and thus inferred their abundance. Peptides unique to different protein isoforms were used to classify the remaining peptides assigned to the entire subset of isoforms based on a common abundance profile using multivariate statistical procedures. We identified nearly 4000 proteins which we used for quantitative functional annotation making this the most extensive study of the tuber proteome to date.

Publications

Teichert, A.; Lübken, T.; Schmidt, J.; Kuhnt, C.; Huth, M.; Porzel, A.; Wessjohann, L.; Arnold, N.; Determination of β‐carboline alkaloids in fruiting bodies of Hygrophorus spp. by liquid chromatography/electrospray ionisation tandem mass spectrometry Phytochem. Anal. 19 335-341 (2008) DOI: 10.1002/pca.1057
  • Abstract
  • BibText
  • RIS

The β ‐carboline alkaloids harmane (1 ) and norharmane (2 ) were isolated from fruiting bodies of Hygrophorus eburneus (Bull.) Fr. as well as brunnein A (3 ) from Hygrophorus hyacinthinus Quél. (Tricholomataceae, Agaricales) for the first time. Their occurrence within the genus was investigated using liquid chromatography/electrospray ionisation tandem mass spectrometric methods, especially by selected reaction monitoring. Based on these results their chemotaxonomical relevance is discussed.

  • 1
  • 2

Print

  • IPB Halle
  • News
  • Lectures
  • Publications
  • Public Tendering
  • IPB Remote & Mail
  • Imprint
  • Data Protection
  • Accessibility
  • Die Leibniz-Gemeinschaft
  • Wege zu einer pflanzenbasierten Wirtschaft
  • Martin-Luther Universität Halle
  • Erfolgsfaktor Familie
  • TOTAL E-QUALITY
  • Research
    • Research Mission and Profile

    • Molecular Signal Processing

    • Bioorganic Chemistry

    • Biochemistry of Plant Interactions

    • Cell and Metabolic Biology

    • Independent Junior Research Groups

    • Program Center MetaCom

    • Publications

    • Good Scientific Practice

    • Research Funding

    • Networks and Collaborative Projects

    • Symposia and Colloquia

    • Alumni Research Groups

  • Infrastructure
    • Databases and Tools

    • Technical Resources

    • Imaging Unit

    • Greenhouses and Phytochambers

    • Library Services

  • Institute
    • Organizational Chart

    • Management and Boards

    • Administration and Infrastructure

    • Energy Management

    • Diversity, Family, Equality

    • Public Tendering

    • Patents and Licensing

    • The IPB Welcoming Culture

    • Guest Houses

    • IPB Site Map

    • Brief IPB History

    • Alumni Network

  • Career
    • Data protection information for applicants

    • PhD Program

    • Postdocs

    • Berufsausbildung

  • Public Relations
    • News

    • News Ticker Science

    • Press Releases

    • IPB Pressespiegel

    • LANGE NACHT, DIE WISSEN SCHAFFT: PROGRAMM

    • IPB Newsletter

    • Printed / Information Material

    • Scientific Reports / Research Highlights

    • Events

    • Cover Art

    • Citizen Science: Pilzberatung

  • IPB Remote & Mail