- Results as:
- Print view
- Endnote (RIS)
- BibTeX
- Table: CSV | HTML
Publications
Publications
Publications
Publications
Publications
Publications
Publications
Publications
Publications
Publications
Research Mission and Profile
Molecular Signal Processing
Bioorganic Chemistry
Biochemistry of Plant Interactions
Cell and Metabolic Biology
Independent Junior Research Groups
Program Center MetaCom
Publications
Good Scientific Practice
Research Funding
Networks and Collaborative Projects
Symposia and Colloquia
Alumni Research Groups
Publications
Unspecific peroxygenases (UPOs) are fungal enzymes that attract significant attention for their ability to perform versatile oxyfunctionalization reactions using H2O2. Unlike other oxygenases, UPOs do not require additional reductive equivalents or electron transfer chains that complicate basic and applied research. Nevertheless, UPOs generally exhibit low to no heterologous production levels and only four UPO structures have been determined to date by crystallography limiting their usefulness and obstructing research. To overcome this bottleneck, we implemented a workflow that applies PROSS stability design to AlphaFold2 model structures of 10 unique and diverse UPOs followed by a signal peptide shuffling to enable heterologous production. Nine UPOs were functionally produced in Pichia pastoris, including the recalcitrant CciUPO and three UPOs derived from oomycetes the first nonfungal UPOs to be experimentally characterized. We conclude that the high accuracy and reliability of new modeling and design workflows dramatically expand the pool of enzymes for basic and applied research.
Publications
Unspecific peroxygenases (UPOs) perform oxy-functionalizations for a wide range of substrates utilizing H2O2 without the need for further reductive equivalents or electron transfer chains. Tailoring these promising enzymes toward industrial application was intensely pursued in the last decade with engineering campaigns addressing the heterologous expression, activity, stability, and improvements in chemo- and regioselectivity. One hitherto missing integral part was the targeted engineering of enantioselectivity for specific substrates with poor starting enantioselectivity. In this work, we present the engineering of the short-type MthUPO toward the enantiodivergent hydroxylation of the terpene model substrate, β-ionone. Guided by computational modeling, we designed a small smart library and screened it with a GC−MS setup. After two rounds of iterative protein evolution, the activity increased up to 17-fold and reached a regioselectivity of up to 99.6% for the 4-hydroxy-β-ionone. Enantiodivergent variants were identified with enantiomeric ratios of 96.6:3.4 (R) and 0.3:99.7 (S), respectively.
Publications
Engineering proteins and enzymes with the desired functionality has broad applications in molecular biology, biotechnology, biomedical sciences, health, and medicine. The vastness of protein sequence space and all the possible proteins it represents can pose a considerable barrier for enzyme engineering campaigns through directed evolution and rational design. The nonlinear effects of coevolution between amino acids in protein sequences complicate this further. Data-driven models increasingly provide scientists with the computational tools to navigate through the largely undiscovered forest of protein variants and catch a glimpse of the rules and effects underlying the topology of sequence space. In this review, we outline a complete theoretical journey through the processes of protein engineering methods such as directed evolution and rational design and reflect on these strategies and data-driven hybrid strategies in the context of sequence space. We discuss crucial phenomena of residue coevolution, such as epistasis, and review the history of models created over the past decade, aiming to infer rules of protein evolution from data and use this knowledge to improve the prediction of the structure− function relationship of proteins. Data-driven models based on deep learning algorithms are among the most promising methods that can account for the nonlinear phenomena of sequence space to some degree. We also critically discuss the available models to predict evolutionary coupling and epistatic effects (classical and deep learning) in terms of their capabilities and limitations. Finally, we present our perspective on possible future directions for developing data-driven approaches and provide key orientation points and necessities for the future of the fast-evolving field of enzyme engineering.
Publications
’Candidatus Phytoplasma mali’, is a bacterial pathogen associated with the so-called apple proliferation disease in Malus × domestica. The pathogen manipulates its host with a set of effector proteins, among them SAP11CaPm, which shares similarity to SAP11AYWB from ’Candidatus Phytoplasma asteris’. SAP11AYWB interacts and destabilizes the class II CIN transcription factors of Arabidopsis thaliana, namely AtTCP4 and AtTCP13 as well as the class II CYC/TB1 transcription factor AtTCP18, also known as BRANCHED1 being an important factor for shoot branching. It has been shown that SAP11CaPm interacts with the Malus × domestica orthologues of AtTCP4 (MdTCP25) and AtTCP13 (MdTCP24), but an interaction with MdTCP16, the orthologue of AtTCP18, has never been proven. The aim of this study was to investigate this potential interaction and close a knowledge gap regarding the function of SAP11CaPm. A Yeast two-hybrid test and Bimolecular Fluorescence Complementation in planta revealed that SAP11CaPm interacts with MdTCP16. MdTCP16 is known to play a role in the control of the seasonal growth of perennial plants and an increase of MdTCP16 gene expression has been detected in apple leaves in autumn. In addition to this, MdTCP16 is highly expressed during phytoplasma infection. Binding of MdTCP16 by SAP11CaPm might lead to the induction of shoot proliferation and early bud break, both of which are characteristic symptoms of apple proliferation disease.
Publications
In recent years, the engineering of flexible loops to improve enzyme properties has gained attention in biocatalysis. Herein, we report a loop engineering strategy to improve the stability of the substrate access tunnels, which reveals the molecular mechanism between loops and tunnels. Based on the dynamic tunnel analysis of CYP116B3, five positions (A86, T91, M108, A109, T111) in loops B-B′ and B′-C potentially affecting tunnel frequent occurrence were selected and subjected to simultaneous saturation mutagenesis. The best variant 8G8 (A86T/T91L/M108N/A109M/T111A) for the dealkylation of 7-ethoxycoumarin and the hydroxylation of naphthalene was identified with considerably increased activity (134-fold and 9-fold) through screening. Molecular dynamics simulations showed that the reduced flexibility of loops B-B′ and B′-C was responsible for increasing the stability of the studied tunnel. The redesign of loops B-B′ and B′-C surrounding the tunnel entrance provides loop engineering with a powerful and likely general method to kick on/off the substrate/product transportation.
Publications
Enzymatic hydroxylation of activated and nonactivated sp3-carbons attracts keen interest from the chemistry community as it is one of the most challenging tasks in organic synthesis. Nature provides a vast number of enzymes with an enormous catalytic versatility to fulfill this task. Given that those very different enzymes have a distinct specificity in substrate scope, selectivity, activity, stability, and catalytic cycle, it is interesting to outline similarities and differences. In this Review, we intend to delineate which enzymes possess considerable advantages within specific issues. Heterologous production, crystal structure availability, enzyme engineering potential, and substrate promiscuity are essential factors for the applicability of these biocatalysts.
Publications
Unspecific peroxygenases (UPOs) enable oxyfunctionalizations of a broad substrate range with unparalleled activities. Tailoring these enzymes for chemo- and regioselective transformations represents a grand challenge due to the difficulties in their heterologous productions. Herein, we performed protein engineering in Saccharomyces cerevisiae using the MthUPO from Myceliophthora thermophila. More than 5300 transformants were screened. This protein engineering led to a significant reshaping of the active site as elucidated by computational modelling. The reshaping was responsible for the increased oxyfunctionalization activity, with improved kcat/Km values of up to 16.5-fold for the model substrate 5-nitro-1,3-benzodioxole. Moreover, variants were identified with high chemo- and regioselectivities in the oxyfunctionalization of aromatic and benzylic carbons, respectively. The benzylic hydroxylation was demonstrated to perform with enantioselectivities of up to 95% ee. The proposed evolutionary protocol and rationalization of the enhanced activities and selectivities acquired by MthUPO variants represent a step forward toward the use and implementation of UPOs in biocatalytic synthetic pathways of industrial interest.
Publications
Atypical myopathy (AM) in horses is caused by ingestion of seeds of the Acer species (Sapindaceae family). Methylenecyclopropylacetyl-CoA (MCPA-CoA), derived from hypoglycin A (HGA), is currently the only active toxin in Acer pseudoplatanus or Acer negundo seeds related to AM outbreaks. However, seeds or arils of various Sapindaceae (e.g., ackee, lychee, mamoncillo, longan fruit) also contain methylenecyclopropylglycine (MCPG), which is a structural analogue of HGA that can cause hypoglycaemic encephalopathy in humans. The active poison formed from MCPG is methylenecyclopropylformyl-CoA (MCPF-CoA). MCPF-CoA and MCPA-CoA strongly inhibit enzymes that participate in β-oxidation and energy production from fat. The aim of our study was to investigate if MCPG is involved in Acer seed poisoning in horses. MCPG, as well as glycine and carnitine conjugates (MCPF-glycine, MCPF-carnitine), were quantified using high-performance liquid chromatography-tandem mass spectrometry of serum and urine from horses that had ingested Acer pseudoplatanus seeds and developed typical AM symptoms. The results were compared to those of healthy control horses. For comparison, HGA and its glycine and carnitine derivatives were also measured. Additionally, to assess the degree of enzyme inhibition of β-oxidation, several acyl glycines and acyl carnitines were included in the analysis. In addition to HGA and the specific toxic metabolites (MCPA-carnitine and MCPA-glycine), MCPG, MCPF-glycine and MCPF-carnitine were detected in the serum and urine of affected horses. Strong inhibition of β-oxidation was demonstrated by elevated concentrations of all acyl glycines and carnitines, but the highest correlations were observed between MCPF-carnitine and isobutyryl-carnitine (r = 0.93) as well as between MCPA- (and MCPF-) glycine and valeryl-glycine with r = 0.96 (and r = 0.87). As shown here, for biochemical analysis of atypical myopathy of horses, it is necessary to take MCPG and the corresponding metabolites into consideration.
Publications
0
Publications
Glucosinolates, a group of sulfur-rich thioglucosides found in plants of the order Brassicales, have attracted a lot of interest as chemical defenses of plants and health promoting substances in human diet. They are accumulated separately from their hydrolyzing enzymes, myrosinases, within the intact plant, but undergo myrosinase-catalyzed hydrolysis upon tissue disruption. This results in various biologically active products, e.g. isothiocyanates, simple nitriles, epithionitriles, and organic thiocyanates. While formation of isothiocyanates proceeds by a spontaneous rearrangement of the glucosinolate aglucone, aglucone conversion to the other products involves specifier proteins under physiological conditions. Specifier proteins appear to act with high specificity, but their exact roles and the structural bases of their specificity are presently unknown. Previous research identified the motif EXXXDXXXH as potential iron binding site required for activity, but crystal structures of recombinant specifier proteins lacked the iron cofactor. Here, we provide experimental evidence for the presence of iron (most likely Fe2+) in purified recombinant thiocyanate-forming protein from Thlaspi arvense (TaTFP) using a Ferene S-based photometric assay as well as Inductively Coupled Plasma-Mass Spectrometry. Iron binding and activity depend on E266, D270, and H274 suggesting a direct interaction of Fe2+ with these residues. Furthermore, we demonstrate presence of iron in epithiospecifier protein and nitrile-specifier protein 3 from Arabidopsis thaliana (AtESP and AtNSP3). We also present a homology model of AtNSP3. In agreement with this model, iron binding and activity of AtNSP3 depend on E386, D390, and H394. The homology model further suggests that the active site of AtNSP3 imposes fewer restrictions to the glucosinolate aglucone conformation than that of TaTFP and AtESP due to its larger size. This may explain why AtNSP3 does not support epithionitrile or thiocyanate formation, which likely requires exact positioning of the aglucone thiolate relative to the side chain.