- Results as:
- Print view
- Endnote (RIS)
- BibTeX
- Table: CSV | HTML
Publications
Publications
Publications
Publications
Publications
Publications
Publications
Publications
Publications
Research Mission and Profile
Molecular Signal Processing
Bioorganic Chemistry
Biochemistry of Plant Interactions
Cell and Metabolic Biology
Independent Junior Research Groups
Program Center MetaCom
Publications
Good Scientific Practice
Research Funding
Networks and Collaborative Projects
Symposia and Colloquia
Alumni Research Groups
Publications
Twenty new 5-(hydroxyalkyl)-2-cyclopentenone derivatives (hygrophorones) could be isolated from Hygrophorus latitabundus, H. olivaceoalbus, H. persoonii, and H. pustulatus. Their fungicidal activity was exemplarily tested. The hygrophorones have structural similarities to the antibiotic pentenomycin. Chemically, hygrophorones are 2-cyclopentenones with hydroxy or acetoxy substituents at C-4 and/or C-5. An odd-numbered 1′ oxidized alkyl chain (C11, C13, C15, or C17) is attached at C-5. In addition, from H. persoonii the new γ-butyrolactone derivative [5-(E)-2-hydroxytetradexylidene-5H-furan-2-one] could be isolated. Some hygrophorones are responsible for the color reaction of the stipes of these fungi upon treatment with potassium hydroxide solution. Structural elucidations are based on 1D (1H, 13C) and 2D (COSY, NOESY, HSQC, HMBC) NMR spectroscopic analyses as well as HR-FT-ICR-MS investigations.A series of new cyclopentenone derivatives and butyrolactones with antifungical activity could be isolated from fruit bodies of the basidiomyceteous genus Hygrophorus. Structural elucidations are based on 1D and 2D NMR spectroscopic analyses as well as HR-FT-ICR-MS investigations.
Publications
The activation of mitogen-activated protein kinase (MAPK) cascades is an important mechanism for stress adaptation through the control of gene expression in mammals, yeast, and plants. MAPK activation has emerged as a common mechanism by which plants trigger pathogen defense responses following innate immune recognition of potential microbial pathogens. We are studying the non-host plant defense response of parsley to attempted infection by Phytophthora species using an experimental system of cultured parsley cells and the Phytophthora-derived Pep-13 peptide elicitor. Following receptor-mediated recognition of this peptide, parsley cells trigger a multifaceted innate immune response, involving the activation of three MAPKs that have been shown to function in the oxidative burst-independent activation of defense gene expression. Using this same experimental model we now report the identification of a MAPK kinase (MAPKK) that functions upstream in this pathway. This kinase, referred to as PcMKK5 based on sequence similarity to Arabidopsis thaliana AtMKK5, is activated in parsley cells following Pep-13 treatment and functions as an in vivo activator of all three MAPKs previously shown to be involved in this response. Gain- and loss-of-function mutant versions of PcMKK5, when used in protoplast co-transfection assays, demonstrated that kinase activity of PcMKK5 is required for PR gene promoter activation following Pep-13 treatment. Furthermore, using specific antibodies and immunofluorescent labeling, we demonstrate that activation of MAPKs in parsley cells correlates with an increase in their nuclear localization, which is not detectable for activated PcMKK5. These results suggest that activation of gene expression through MAPK cascades during innate immune responses in plants involves dynamic changes in the localization of the proteins involved, which may reflect the distribution of key protein substrates for the activated MAPKs.
Publications
Bicyclic lactams, suitable for incorporation into conformationally restricted peptide mimics, can be synthesized by using olefinic starting materials for the Ugi multicomponent reaction, setting up an olefin metathesis reaction, that is easily carried out with the Grubbs catalyst. The influence of the different starting materials is evaluated. In addition, the utilization of chiral, nonracemic amines is described.
Publications
Ribonuclease LE (RNaseLE) from tomato (Lycopersicon esculentum Mill. cv. Lukullus) belongs to the widespread RNase T2 family of ribonucleases. With the exception of S-RNases of the solanaceous self-incompatibility system the functions of other members of the RNase T2 family are only barely understood. Using a 2.6-kbp putative promoter sequence of RNaseLE in front of the uidA reporter gene, expression of β-glucuronidase in developing phloem tissue and, especially, in the meristematic and elongation zones at root tips was detected. The tissue-specific expression accords with the range of cis-acting elements detected in the RNaseLE promoter. RNaseLE mRNA was localized in developing phloem cells but not in mature phloem tissue, suggesting association of RNaseLE expression with phloem development. Histochemical staining of β-glucuronidase activity as well as detailed inspection of RNaseLE at mRNA, protein and enzyme activity levels revealed that the wound-induced expression of RNaseLE was also restricted to vascular tissue. RNaseLE transcript accumulation detected by in situ hybridization occurred preferentially in phloem and cambial cells of stem sections upon wounding. The data provide evidence for a role of RNaseLE in a tissue-specific wound response and in wound healing of tomato.
Publications
The quantifications of root colonization and symbiotic activity in the arbuscular mycorrhizal (AM) association of Medicago truncatula and Glomus intraradices were performed by quantitative polymerase chain reaction (real-time PCR). A strong correlation between fungal colonization of the root system and the amounts of fungal rDNA and rRNA were shown. In contrast, the transcript levels of the AM-specific phosphate transporter 4 from M. truncatula (MtPT4) correlate with arbuscule formation rather than with fungal colonization. These results suggest (i) that real-time PCR assay is a rapid, useful, and accurate method for the determination of arbuscular mycorrhizal features, (ii) that the amount of fungal rDNA or rRNA is a good parameter to estimate fungal colonization, and (iii) that it is necessary to evaluate the amount of other transcripts—like the MtPT4 transcript—to obtain additional information about the symbiotic state of the colonized root system.
Publications
Eleven collections of Cladonia furcata and fourteen of Cladonia rangiformis, mainly from Saxony Anhalt (Germany) have been analyzed for their lichen substances by HPLC and HPLC-MS. The main compounds of C. furcata are fumarprotocetraric acid, atranorin, protocetraric acid, rangiformic acid, bourgeanic acid, norrangiformic acid and the new lichen metabolite 1-methyl 3,4-dicarboxydecanoate. C. rangiformis is characterized by atranorin, rangiformic acid, norrangiformic acid and 1-methyl 3,4-dicarboxyhexadecanoate, while bourgeanic acid is absent.
Publications
A synthase which oxidizes (S)-reticuline to 1,2-dehydroreticuline has been found to occur in seedlings of opium poppy (Papaver somniferum L.). Due to its instability, this enzyme could only be partly purified (ca. 5-fold enrichment). Partial characterization at this stage of purification showed that it does not need a redox cofactor and accepts both (S)-reticuline and (S)-norreticuline as substrates. [1-2H, 13C]-(R,S)-reticuline was enzymatically converted into [1-13C]-dehydroreticuline, which has been identified by mass spectrometry. Release of the hydrogen atom in position C-1 of the isoquinoline alkaloid during the oxidative conversion, was exploited as a sensitive assay system for this enzyme. The enzyme has a pH optimum of 8.75, a temperature optimum of 37 °C and the apparent KM value for the substrate reticuline was shown to be 117 μM. Moreover it could be demonstrated by sucrose density gradient centrifugation that the enzyme is located in vesicles of varying size. In combination with the previously discovered strictly stereoselective and NADPH dependent 1,2-dehydroreticuline reductase the detection of this enzyme, the 1,2-dehydroreticuline synthase, provides the necessary inversion of configuration and completes the pathway from two molecules of L-tyrosine via (S)-norcoclaurine to (R)-reticuline in opium poppy involving a total number of 11 enzymes.A synthase which oxidizes (S)-reticuline to 1,2-dehydroreticuline has been found to occur in seedlings of opium poppy (Papaver somniferum L.)
Publications
Phytochelatins are glutathione-derived, non-translationally synthesized peptides essential for cadmium and arsenic detoxification in plant, fungal and nematode model systems. Recent sequencing programs have revealed the existence of phytochelatin synthase-related genes in a wide range of organisms that have not been reported yet to produce phytochelatins. Among those are several cyanobacteria. We have studied one of the encoded proteins (alr0975 from Nostoc sp. strain PCC 7120) and demonstrate here that it does not possess phytochelatin synthase activity. Instead, this protein catalyzes the conversion of glutathione to γ-glutamylcysteine. The thiol spectrum of yeast cells expressing alr0975 shows the disappearance of glutathione and the formation of a compound that by LC–MSMS analysis was unequivocally identified as γ-glutamylcysteine. Purified recombinant protein catalyzes the respective reaction. Unlike phytochelatin synthesis, the conversion of glutathione to γ-glutamylcysteine is not dependent on activation by metal cations. No evidence was found for the accumulation of phytochelatins in cyanobacteria even after prolonged exposure to toxic Cd2+ concentrations. Expression of alr0975 was detected in Nostoc sp. cells with an antiserum raised against the protein. No indication for a responsiveness of expression to toxic metal exposure was found. Taken together, these data provide further evidence for possible additional functions of phytochelatin synthase-related proteins in glutathione metabolism and provide a lead as to the evolutionary history of phytochelatin synthesis.
Publications
In livingstone daisy (Dorotheanthus bellidiformis ), betanidin 5‐O‐glucosyltransferase (UGT73A5) is involved in the regiospecific glucosylation of betanidin and various flavonols. Based on sequence alignments several amino acid candidates which might be essential for catalysis were identified. The selected amino acids of the functionally expressed protein, suggested to be involved in substrate binding and turnover, were substituted via site‐directed mutagenesis. The substitution of two highly conserved amino acids, Glu378, located in the proposed UDP‐glucose binding site, and His22, located close to the N‐terminus, led to the complete loss of enzyme activity. A 3D model of this regiospecific betanidin and flavonoid glucosyltransferase was constructed and the active site modelled. This model was based on the crystallographic structure of a bacterial UDP‐glucose‐dependent glucosyltransferase from Amycolatopsis orientalis used as a template and the generated null mutations. To explain the observed inversion in the configuration of the bound sugar, semiempirical calculations favour an SN‐1 reaction, as one plausible alternative to the generally proposed SN‐2 mechanism discussed for plant natural product glucosyltransferases. The calculated structural data do not only explain the abstraction of a proton from the acceptor betanidin, but further imply that the reaction mechanism might also involve a catalytic triad, with similarities described for the serine protease family.
Publications
Colonization of plant roots by symbiotic arbuscular mycorrhizal fungi frequently leads to the accumulation of several apocarotenoids. The corresponding carotenoid precursors originate from the plastidial 2-C-methyl-d-erythritol 4-phosphate pathway. We have cloned and characterized 1-deoxy-d-xylulose 5-phosphate reductoisomerase (DXR), catalyzing the first committed step of the pathway, from maize (Zea mays). Functional identification was accomplished by heterologous expression of sequences coding for the mature protein in Escherichia coli. DXR is up-regulated in maize roots during mycorrhization as shown at transcript and protein levels, but is also abundant in leaves and young seedlings. Inspection of sequenced genomes and expressed sequence tag (EST) databases argue for a single-copy DXR gene. Immunolocalization studies in mycorrhizal roots using affinity-purified antibodies revealed a DXR localization in plastids around the main symbiotic structures, the arbuscules. DXR protein accumulation is tightly correlated with arbuscule development. The highest level of DXR protein is reached around maturity and initial senescence of these structures. We further demonstrate the formation of a DXR-containing plastidial network around arbuscules, which is highly interconnected in the mature, functional state of the arbuscules. Our findings imply a functional role of a still unknown nature for the apocarotenoids or their respective carotenoid precursors in the arbuscular life cycle.