logo ipb
logo ipb mobile
x
  • Deutsch
  • English
Benutzeranmeldung
  • Research
    • Research Mission and Profile

    • Molecular Signal Processing

      • Secretariat & All Staff
      • Technical Resources
      • Publications
      • Research Groups
        • Nutrient Sensing
          • Projects
          • Staff
          • Publications
          • Collaborations
        • Symbiosis Signaling
          • Projects
          • Staff
          • Publications
          • Collaborations
        • Jasmonate Signaling
          • Projects
          • Staff
          • Publications
          • Collaborations
    • Bioorganic Chemistry

      • Secretariat & All Staff
      • Technical Resources
      • Publications
      • Research Groups
        • Bioactives
          • Projects
          • Staff
          • Publications
          • Collaborations
        • Natural Products & Metabolomics
          • Projects
          • Staff
          • Publications
          • Collaborations
        • Biotechnology
          • Projects
          • Staff
          • Publications
          • Collaborations
        • Biofunctional Synthesis
          • Projects
          • Staff
          • Publications
          • Collaborations
        • Computational Chemistry
          • Projects
          • Staff
          • Publications
          • Collaborations
        • Data & Resources
          • Projects
          • Staff
          • Publications
          • Collaborations
    • Biochemistry of Plant Interactions

      • Secretariat & All Staff
      • Technical Resources
      • Publications
      • Research Groups
        • Calcium-dependent Protein Kinases
          • Projects
          • Staff
          • Publications
          • Collaborations
        • Cellular Signaling
          • Projects
          • Staff
          • Publications
          • Collaborations
        • Metabolite-based Defense Mechanisms
          • Projects
          • Staff
          • Publications
          • Collaborations
        • Nuclear Processes in Plant Defense
          • Projects
          • Staff
          • Publications
          • Collaborations
    • Cell and Metabolic Biology

      • Secretariat & All Staff
      • Technical Resources
      • Publications
      • Research Groups
        • Glandular Trichomes and Isoprenoid Biosynthesis
          • Projects
          • Staff
          • Publications
          • Collaborations
        • Jasmonate Function & Mycorrhiza
          • Projects
          • Staff
          • Publications
          • Collaborations
        • Phenylpropanoid Metabolism
          • Projects
          • Staff
          • Publications
          • Collaborations
        • Synthetic Biology
          • Projects
          • Staff
          • Publications
          • Collaborations
    • Independent Junior Research Groups

      • Research Groups
        • Receptor Biochemistry
          • Projects
          • Staff
          • Publications
          • Collaborations
    • Program Center MetaCom

      • Secretariat & All staff
      • Publikationen
      • Our Equipment
      • Research Groups
        • Metabolomics Facility
          • Projects
          • Staff
          • Publications
          • Methods
        • MetaCom Analytical Laboratory
          • Projects
          • Staff
          • Publications
          • Methods
        • Computational Plant Biochemistry
          • Projects
          • Staff
          • Publications
          • Collaborations
        • MetaCom Junior Research Group
          • Projects
          • Staff
    • Publications

    • Good Scientific Practice

    • Research Funding

    • Networks and Collaborative Projects

      • Collaborative Projects as Coordinator
        • Completed Projects as Coordinator
      • Collaborative Projects as Partner
        • Completed Projects as Partner
      • Networks
    • Symposia and Colloquia

      • Lectures
        • IPB Seminars
      • Leibniz Plant Biochemistry Symposia
    • Alumni Research Groups

      • Research Groups
        • Auxin Signaling
          • Projects
          • Publications
        • Bioorganic Chemistry
          • Projects
          • Publications
        • Designer Glycans
          • Projects
          • Publications
        • Jasmonate Mode of Action
          • Publications
        • Protein Recognition and Degradation
          • Projects
          • Publications
        • Regulatory RNAs (MLU-associated group)
          • Projects
          • Publications
        • Signal Integration
          • Projects
          • Publications
        • Ubiquitination in Immunity
          • Projects
          • Publications
        • Cellular Coordination
          • Projects
          • Publications
  • Infrastructure
    • Databases and Tools

      • XCMS
      • Rdisop
      • CAMERA
      • MetShot
      • MassBank
      • MetFrag
      • MetFamily
      • PaCeQuant
      • CytoskeletonAnalyzer
      • GoldenMutagenesis
      • cisHighlight
      • FlagScreen
      • RootDetection
    • Technical Resources

    • Imaging Unit

    • Greenhouses and Phytochambers

    • Library Services

      • OPAC
      • Electronic Journals Library
      • Service for Employees
  • Institute
    • Organizational Chart

    • Management and Boards

      • Board of Trustees
      • Scientific Advisory Board
      • IPB Management / Board of Directors
      • Scientific Council
      • Authorized Representatives of the IPB
      • Staff Council
      • Statutes
    • Administration and Infrastructure

      • Secretariat & All Staff
      • Working Groups
        • Human Resources
        • Finance & Accounting
        • Purchasing
        • IT & Technical Support
        • Experimental Nursery
        • Facility Management
        • Library
        • Digitalization
    • Energy Management

      • Objectives and Measures
      • Energy Management Team
    • Diversity, Family, Equality

      • Diversity
      • Equality
      • Family Support
      • Training and further Education
      • Integration and Health
      • General Equal Treatment Act
    • Public Tendering

    • Patents and Licensing

    • The IPB Welcoming Culture

    • Guest Houses

    • IPB Site Map

    • Brief IPB History

      • Bildergalerie zur Historie
      • Alte Filmsequenzen zum Institut
      • Historischer Massenspektrograph
    • Alumni Network

      • The IPB as a career launching pad
  • Career
    • Data protection information for applicants

    • PhD Program

      • PhD Student Representatives
      • DoCou - Doctoral Training Courses
      • PSSC
    • Postdocs

    • Berufsausbildung

  • Public Relations
    • News

      • 2024
      • 2023
      • 2022
      • Archiv Aktuelles
        • 2021
        • 2020
        • 2019
        • 2018
        • 2017
        • 2016
        • 2015
        • 2014
        • vor 2014
    • News Ticker Science

      • News Ticker 2024
      • News Ticker 2023
      • News Ticker 2022
      • News Ticker Archive
        • News Ticker 2021
        • News Ticker 2020
        • News Ticker 2019
    • Press Releases

      • 2024
      • 2023
      • 2022
      • Archive Press Releases
        • 2021
        • 2020
        • 2019
        • 2018
        • 2017
        • 2016
        • 2015
        • 2014
        • 2013
        • 2012
        • 2011
        • 2010
        • 2009
        • 2008
        • 2007
        • 2006
        • 2005
        • 2004
        • 2003
        • 2002
    • IPB Pressespiegel

    • LANGE NACHT, DIE WISSEN SCHAFFT: PROGRAMM

    • IPB Newsletter

    • Printed / Information Material

    • Scientific Reports / Research Highlights

    • Events

      • 2024 Long Night of Sciences
      • 2024 Leibniz Plant Biochemistry Symposium
      • Archiv Veranstaltungen
    • Cover Art

    • Citizen Science: Pilzberatung

      • Das Reich der Pilze
      • Pilzberatung
      • Forschung an Pilzen
  • Contact
    • Directions for Visitors

    • Staff Directory

    • Imprint

    • Data Protection

    • Accessibility

  1. IPB Halle
  2. Research
  3. Publications

    • Research Mission and Profile
    • Trenner 0
    • Molecular Signal Processing
      • Secretariat & All Staff
      • Technical Resources
      • Publications
      • Research Groups
        • Nutrient Sensing
        • Symbiosis Signaling
        • Jasmonate Signaling
    • Bioorganic Chemistry
      • Secretariat & All Staff
      • Technical Resources
      • Publications
      • Research Groups
        • Bioactives
        • Natural Products & Metabolomics
        • Biotechnology
        • Biofunctional Synthesis
        • Computational Chemistry
        • Data & Resources
    • Biochemistry of Plant Interactions
      • Secretariat & All Staff
      • Technical Resources
      • Publications
      • Research Groups
        • Calcium-dependent Protein Kinases
        • Cellular Signaling
        • Metabolite-based Defense Mechanisms
        • Nuclear Processes in Plant Defense
    • Cell and Metabolic Biology
      • Secretariat & All Staff
      • Technical Resources
      • Publications
      • Research Groups
        • Glandular Trichomes and Isoprenoid Biosynthesis
        • Jasmonate Function & Mycorrhiza
        • Phenylpropanoid Metabolism
        • Synthetic Biology
    • Independent Junior Research Groups
      • Research Groups
        • Receptor Biochemistry
    • Program Center MetaCom
      • Secretariat & All staff
      • Publikationen
      • Our Equipment
      • Research Groups
        • Metabolomics Facility
        • MetaCom Analytical Laboratory
        • Computational Plant Biochemistry
        • MetaCom Junior Research Group
    • Trenner 1
    • Publications
    • Good Scientific Practice
    • Research Funding
    • Trenner
    • Networks and Collaborative Projects
      • Collaborative Projects as Coordinator
        • Completed Projects as Coordinator
      • Collaborative Projects as Partner
        • Completed Projects as Partner
      • Networks
    • Symposia and Colloquia
      • Lectures
        • IPB Seminars
      • Leibniz Plant Biochemistry Symposia
    • Trenner
    • Alumni Research Groups
      • Research Groups
        • Auxin Signaling
        • Bioorganic Chemistry
        • Designer Glycans
        • Jasmonate Mode of Action
        • Protein Recognition and Degradation
        • Regulatory RNAs (MLU-associated group)
        • Signal Integration
        • Ubiquitination in Immunity
        • Cellular Coordination

Advanced Search

  • Type of publication
    • Publication (67)
      Books and chapters (9)
  • Year
    • 1989 (2)
      1990 (2)
      1991 (1)
      1992 (3)
      1993 (6)
      1994 (10)
      1995 (19)
      1996 (26)
      1997 (54)
      1998 (46)
      1999 (51)
      2000 (55)
      2001 (48)
      2002 (76)
      2003 (69)
      2004 (73)
      2005 (84)
      2006 (90)
      2007 (96)
      2008 (89)
      2009 (78)
      2010 (74)
      2011 (71)
      2012 (105)
      2013 (92)
      2014 (121)
      2015 (116)
      2016 (126)
      2017 (119)
      2018 (114)
      2019 (151)
      2020 (104)
      2021 (103)
      2022 (105)
      2023 (93)
      2024 (80)
      2025 (8)
  • Journal / Volume / Preprint Server Sorted by frequency and by alphabetical order
    • Phytochemistry (8)
      Plant J. (7)
      FEBS Lett. (5)
      0 (4)
      Mol. Plant Microbe Interact. (3)
      Plant Physiol. (3)
      Tetrahedron Lett. (3)
      Adv. Exp. Med. Biol. (2)
      Eur. J. Org. Chem. (2)
      J. Plant Physiol. (2)
      Mol. Plant Pathol. (2)
      Proc. Natl. Acad. Sci. U.S.A. (2)
      Tetrahedron: Asymmetry (2)
      Vietnam J. Chem. (2)
      ARKIVOC (1)
      Adv. Synth. Catal. (1)
      BBA-Proteins Proteomics (1)
      Bibliotheca Lichenologica (1)
      Biochem. Syst. Ecol. (1)
      Chem. Ber. (1)
      Chem. Biodivers. (1)
      Chem. Biol. (1)
      ChemBioChem (1)
      Curr. Opin. Plant Biol. (1)
      Fitoterapia (1)
      Genes Dev. (1)
      Herzogia (1)
      ISHS Acta Hortic. (1)
      J. Biol. Chem. (1)
      J. Mol. Model. (1)
      J. Plant Growth Regul. (1)
      Nature (1)
      Org. Lett. (1)
      Physiol. Mol. Plant Pathol. (1)
      Plant Cell Physiol. (1)
      Plant Cell Tiss. Organ Cult. (1)
      Planta (1)
      Proteases in Biology and Disease (1)
      Proteomics (1)
      Theor. Appl. Genet. (1)
      Transgenic Res. (1)
      Trends Plant Sci. (1)
      Z. Naturforsch. C (1)
  • Author Sorted by frequency and by alphabetical order
    • Schmidt, J. (13)
      Wessjohann, L. (10)
      Wessjohann, L. A. (9)
      Scheel, D. (7)
      Brandt, W. (6)
      Hause, B. (6)
      Kutchan, T. M. (6)
      Wasternack, C. (6)
      Zenk, M. H. (6)
      Stenzel, I. (5)
      Baumert, A. (4)
      Porzel, A. (4)
      Strack, D. (4)
      Abel, S. (3)
      Clemens, S. (3)
      Feussner, I. (3)
      Franke, K. (3)
      Maucher, H. (3)
      Miersch, O. (3)
      Poeaknapo, C. (3)
      Ruijter, E. (3)
      Vogt, T. (3)
      Anh, N. T. H. (2)
      Arnold, N. (2)
      BERGER, S. (2)
      Baldwin, I. T. (2)
      Dessoy, M. A. (2)
      Fester, T. (2)
      Fulhorst, M. (2)
      Gao, W. (2)
      Groß, N. (2)
      Gröger, D. (2)
      Hajdu, C. (2)
      Hans, J. (2)
      Harada, E. (2)
      Hause, G. (2)
      Huneck, S. (2)
      Hückelhoven, R. (2)
      Kangasjärvi, J. (2)
      Knogge, W. (2)
      Kogel, K.-H. (2)
      Kramell, R. (2)
      Krelaus, R. (2)
      Köck, M. (2)
      Larkin, P. J. (2)
      Macioszek, V. (2)
      Micskei, K. (2)
      Milkowski, C. (2)
      Patonay, T. (2)
      Rosahl, S. (2)
      Scheid, G. (2)
      Schrekker, H. (2)
      Sung, T. V. (2)
      Ticconi, C. A. (2)
      Trujillo, M. (2)
      Westermann, B. (2)
      Ziegler, J. (2)
      von Roepenack-Lahaye, E. (2)
      Ahlfors, R. (1)
      Allen, R. S. (1)
      Angelis, K. J. (1)
      Ansorge, S. (1)
      Araki, T. (1)
      Biebaut, E. (1)
      Boland, W. (1)
      Bornscheuer, U. (1)
      Bornscheuer, U. T. (1)
      Braga, A. (1)
      Brandsch, M. (1)
      Brosché, M. (1)
      Bräuer, L. (1)
      Bukowska, A. (1)
      Bücking, H. (1)
      Camacho-Cristóbal, J. J. (1)
      Carbonell, A. (1)
      Caubergs, R. J. (1)
      Chitty, J. A. (1)
      De la Peña, M. (1)
      Degenkolb, T. (1)
      Delatorre, C. A. (1)
      Delgado, S. (1)
      Delp, G. (1)
      Demuth, H.-U. (1)
      Diedrichs, N. (1)
      Diem, R. (1)
      Dorer, C. (1)
      Dräger, B. (1)
      Ebel, J. (1)
      Faust, J. (1)
      Feige, G. B. (1)
      Fisinger, U. (1)
      Fist, A. J. (1)
      Flores, R. (1)
      Franz, M. (1)
      Frick, S. (1)
      Frisch, M. (1)
      Fritzsch, G. (1)
      Förster, H. (1)
      Gago, S. (1)
      Galm, U. (1)
  • Year
  • Type of publication
Search narrowed by: Year: 1992 Year: 2004 Remove all filters
Displaying results 1 to 10 of 76.
  • Results as:
  • Print view
  • Endnote (RIS)
  • BibTeX
  • Table: CSV | HTML
Results per page:
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8

Publications

Lübken, T.; Schmidt, J.; Porzel, A.; Arnold, N.; Wessjohann, L.; Hygrophorones A–G: fungicidal cyclopentenones from Hygrophorus species (Basidiomycetes) Phytochemistry 65 1061-1071 (2004) DOI: 10.1016/j.phytochem.2004.01.023
  • Abstract
  • BibText
  • RIS

Twenty new 5-(hydroxyalkyl)-2-cyclopentenone derivatives (hygrophorones) could be isolated from Hygrophorus latitabundus, H. olivaceoalbus, H. persoonii, and H. pustulatus. Their fungicidal activity was exemplarily tested. The hygrophorones have structural similarities to the antibiotic pentenomycin. Chemically, hygrophorones are 2-cyclopentenones with hydroxy or acetoxy substituents at C-4 and/or C-5. An odd-numbered 1′ oxidized alkyl chain (C11, C13, C15, or C17) is attached at C-5. In addition, from H. persoonii the new γ-butyrolactone derivative [5-(E)-2-hydroxytetradexylidene-5H-furan-2-one] could be isolated. Some hygrophorones are responsible for the color reaction of the stipes of these fungi upon treatment with potassium hydroxide solution. Structural elucidations are based on 1D (1H, 13C) and 2D (COSY, NOESY, HSQC, HMBC) NMR spectroscopic analyses as well as HR-FT-ICR-MS investigations.A series of new cyclopentenone derivatives and butyrolactones with antifungical activity could be isolated from fruit bodies of the basidiomyceteous genus Hygrophorus. Structural elucidations are based on 1D and 2D NMR spectroscopic analyses as well as HR-FT-ICR-MS investigations.

Publications

Lee, J.; Rudd, J. J.; Macioszek, V. K.; Scheel, D.; Dynamic Changes in the Localization of MAPK Cascade Components Controlling Pathogenesis-related (PR) Gene Expression during Innate Immunity in Parsley J. Biol. Chem. 279 22440-22448 (2004) DOI: 10.1074/jbc.M401099200
  • Abstract
  • BibText
  • RIS

The activation of mitogen-activated protein kinase (MAPK) cascades is an important mechanism for stress adaptation through the control of gene expression in mammals, yeast, and plants. MAPK activation has emerged as a common mechanism by which plants trigger pathogen defense responses following innate immune recognition of potential microbial pathogens. We are studying the non-host plant defense response of parsley to attempted infection by Phytophthora species using an experimental system of cultured parsley cells and the Phytophthora-derived Pep-13 peptide elicitor. Following receptor-mediated recognition of this peptide, parsley cells trigger a multifaceted innate immune response, involving the activation of three MAPKs that have been shown to function in the oxidative burst-independent activation of defense gene expression. Using this same experimental model we now report the identification of a MAPK kinase (MAPKK) that functions upstream in this pathway. This kinase, referred to as PcMKK5 based on sequence similarity to Arabidopsis thaliana AtMKK5, is activated in parsley cells following Pep-13 treatment and functions as an in vivo activator of all three MAPKs previously shown to be involved in this response. Gain- and loss-of-function mutant versions of PcMKK5, when used in protoplast co-transfection assays, demonstrated that kinase activity of PcMKK5 is required for PR gene promoter activation following Pep-13 treatment. Furthermore, using specific antibodies and immunofluorescent labeling, we demonstrate that activation of MAPKs in parsley cells correlates with an increase in their nuclear localization, which is not detectable for activated PcMKK5. These results suggest that activation of gene expression through MAPK cascades during innate immune responses in plants involves dynamic changes in the localization of the proteins involved, which may reflect the distribution of key protein substrates for the activated MAPKs.

Publications

Krelaus, R.; Westermann, B.; Preparation of peptide-like bicyclic lactams via a sequential Ugi reaction––olefin metathesis approach Tetrahedron Lett. 45 5987-5990 (2004) DOI: 10.1016/j.tetlet.2004.06.052
  • Abstract
  • BibText
  • RIS

Bicyclic lactams, suitable for incorporation into conformationally restricted peptide mimics, can be synthesized by using olefinic starting materials for the Ugi multicomponent reaction, setting up an olefin metathesis reaction, that is easily carried out with the Grubbs catalyst. The influence of the different starting materials is evaluated. In addition, the utilization of chiral, nonracemic amines is described.

Publications

Köck, M.; Groß, N.; Stenzel, I.; Hause, G.; Phloem-specific expression of the wound-inducible ribonuclease LE from tomato (Lycopersicon esculentum cv. Lukullus) Planta 219 233-242 (2004) DOI: 10.1007/s00425-004-1227-4
  • Abstract
  • BibText
  • RIS

Ribonuclease LE (RNaseLE) from tomato (Lycopersicon esculentum Mill. cv. Lukullus) belongs to the widespread RNase T2 family of ribonucleases. With the exception of S-RNases of the solanaceous self-incompatibility system the functions of other members of the RNase T2 family are only barely understood. Using a 2.6-kbp putative promoter sequence of RNaseLE in front of the uidA reporter gene, expression of β-glucuronidase in developing phloem tissue and, especially, in the meristematic and elongation zones at root tips was detected. The tissue-specific expression accords with the range of cis-acting elements detected in the RNaseLE promoter. RNaseLE mRNA was localized in developing phloem cells but not in mature phloem tissue, suggesting association of RNaseLE expression with phloem development. Histochemical staining of β-glucuronidase activity as well as detailed inspection of RNaseLE at mRNA, protein and enzyme activity levels revealed that the wound-induced expression of RNaseLE was also restricted to vascular tissue. RNaseLE transcript accumulation detected by in situ hybridization occurred preferentially in phloem and cambial cells of stem sections upon wounding. The data provide evidence for a role of RNaseLE in a tissue-specific wound response and in wound healing of tomato.

Publications

Isayenkov, S.; Fester, T.; Hause, B.; Rapid determination of fungal colonization and arbuscule formation in roots of Medicago truncatula using real-time (RT) PCR J. Plant Physiol. 161 1379-1383 (2004) DOI: 10.1016/j.jplph.2004.04.012
  • Abstract
  • BibText
  • RIS

The quantifications of root colonization and symbiotic activity in the arbuscular mycorrhizal (AM) association of Medicago truncatula and Glomus intraradices were performed by quantitative polymerase chain reaction (real-time PCR). A strong correlation between fungal colonization of the root system and the amounts of fungal rDNA and rRNA were shown. In contrast, the transcript levels of the AM-specific phosphate transporter 4 from M. truncatula (MtPT4) correlate with arbuscule formation rather than with fungal colonization. These results suggest (i) that real-time PCR assay is a rapid, useful, and accurate method for the determination of arbuscular mycorrhizal features, (ii) that the amount of fungal rDNA or rRNA is a good parameter to estimate fungal colonization, and (iii) that it is necessary to evaluate the amount of other transcripts—like the MtPT4 transcript—to obtain additional information about the symbiotic state of the colonized root system.

Publications

Huneck, S.; Feige, G. B.; Schmidt, J.; Chemie von Cladonia furcata und Cladonia rangiformis Herzogia 17 51-58 (2004)
  • Abstract
  • Internet
  • BibText
  • RIS

Eleven collections of Cladonia furcata and fourteen of Cladonia rangiformis, mainly from Saxony Anhalt (Germany) have been analyzed for their lichen substances by HPLC and HPLC-MS. The main compounds of C. furcata are fumarprotocetraric acid, atranorin, protocetraric acid, rangiformic acid, bourgeanic acid, norrangiformic acid and the new lichen metabolite 1-methyl 3,4-dicarboxydecanoate. C. rangiformis is characterized by atranorin, rangiformic acid, norrangiformic acid and 1-methyl 3,4-dicarboxyhexadecanoate, while bourgeanic acid is absent.

Publications

Hirata, K.; Poeaknapo, C.; Schmidt, J.; Zenk, M. H.; 1,2-Dehydroreticuline synthase, the branch point enzyme opening the morphinan biosynthetic pathway Phytochemistry 65 1039-1046 (2004) DOI: 10.1016/j.phytochem.2004.02.015
  • Abstract
  • BibText
  • RIS

A synthase which oxidizes (S)-reticuline to 1,2-dehydroreticuline has been found to occur in seedlings of opium poppy (Papaver somniferum L.). Due to its instability, this enzyme could only be partly purified (ca. 5-fold enrichment). Partial characterization at this stage of purification showed that it does not need a redox cofactor and accepts both (S)-reticuline and (S)-norreticuline as substrates. [1-2H, 13C]-(R,S)-reticuline was enzymatically converted into [1-13C]-dehydroreticuline, which has been identified by mass spectrometry. Release of the hydrogen atom in position C-1 of the isoquinoline alkaloid during the oxidative conversion, was exploited as a sensitive assay system for this enzyme. The enzyme has a pH optimum of 8.75, a temperature optimum of 37 °C and the apparent KM value for the substrate reticuline was shown to be 117 μM. Moreover it could be demonstrated by sucrose density gradient centrifugation that the enzyme is located in vesicles of varying size. In combination with the previously discovered strictly stereoselective and NADPH dependent 1,2-dehydroreticuline reductase the detection of this enzyme, the 1,2-dehydroreticuline synthase, provides the necessary inversion of configuration and completes the pathway from two molecules of L-tyrosine via (S)-norcoclaurine to (R)-reticuline in opium poppy involving a total number of 11 enzymes.A synthase which oxidizes (S)-reticuline to 1,2-dehydroreticuline has been found to occur in seedlings of opium poppy (Papaver somniferum L.)

Publications

Harada, E.; von Roepenack-Lahaye, E.; Clemens, S.; A cyanobacterial protein with similarity to phytochelatin synthases catalyzes the conversion of glutathione to γ-glutamylcysteine and lacks phytochelatin synthase activity Phytochemistry 65 3179-3185 (2004) DOI: 10.1016/j.phytochem.2004.09.017
  • Abstract
  • BibText
  • RIS

Phytochelatins are glutathione-derived, non-translationally synthesized peptides essential for cadmium and arsenic detoxification in plant, fungal and nematode model systems. Recent sequencing programs have revealed the existence of phytochelatin synthase-related genes in a wide range of organisms that have not been reported yet to produce phytochelatins. Among those are several cyanobacteria. We have studied one of the encoded proteins (alr0975 from Nostoc sp. strain PCC 7120) and demonstrate here that it does not possess phytochelatin synthase activity. Instead, this protein catalyzes the conversion of glutathione to γ-glutamylcysteine. The thiol spectrum of yeast cells expressing alr0975 shows the disappearance of glutathione and the formation of a compound that by LC–MSMS analysis was unequivocally identified as γ-glutamylcysteine. Purified recombinant protein catalyzes the respective reaction. Unlike phytochelatin synthesis, the conversion of glutathione to γ-glutamylcysteine is not dependent on activation by metal cations. No evidence was found for the accumulation of phytochelatins in cyanobacteria even after prolonged exposure to toxic Cd2+ concentrations. Expression of alr0975 was detected in Nostoc sp. cells with an antiserum raised against the protein. No indication for a responsiveness of expression to toxic metal exposure was found. Taken together, these data provide further evidence for possible additional functions of phytochelatin synthase-related proteins in glutathione metabolism and provide a lead as to the evolutionary history of phytochelatin synthesis.

Publications

Hans, J.; Brandt, W.; Vogt, T.; Site-directed mutagenesis and protein 3D-homology modelling suggest a catalytic mechanism for UDP-glucose-dependent betanidin 5-O-glucosyltransferase from Dorotheanthus bellidiformis Plant J. 39 319-333 (2004) DOI: 10.1111/j.1365-313X.2004.02133.x
  • Abstract
  • BibText
  • RIS

In livingstone daisy (Dorotheanthus bellidiformis ), betanidin 5‐O‐glucosyltransferase (UGT73A5) is involved in the regiospecific glucosylation of betanidin and various flavonols. Based on sequence alignments several amino acid candidates which might be essential for catalysis were identified. The selected amino acids of the functionally expressed protein, suggested to be involved in substrate binding and turnover, were substituted via site‐directed mutagenesis. The substitution of two highly conserved amino acids, Glu378, located in the proposed UDP‐glucose binding site, and His22, located close to the N‐terminus, led to the complete loss of enzyme activity. A 3D model of this regiospecific betanidin and flavonoid glucosyltransferase was constructed and the active site modelled. This model was based on the crystallographic structure of a bacterial UDP‐glucose‐dependent glucosyltransferase from Amycolatopsis orientalis used as a template and the generated null mutations. To explain the observed inversion in the configuration of the bound sugar, semiempirical calculations favour an SN‐1 reaction, as one plausible alternative to the generally proposed SN‐2 mechanism discussed for plant natural product glucosyltransferases. The calculated structural data do not only explain the abstraction of a proton from the acceptor betanidin, but further imply that the reaction mechanism might also involve a catalytic triad, with similarities described for the serine protease family.

Publications

Hans, J.; Hause, B.; Strack, D.; Walter, M. H.; Cloning, Characterization, and Immunolocalization of a Mycorrhiza-Inducible 1-Deoxy-D-Xylulose 5-Phosphate Reductoisomerase in Arbuscule-Containing Cells of Maize Plant Physiol. 134 614-624 (2004) DOI: 10.1104/pp.103.032342
  • Abstract
  • BibText
  • RIS

Colonization of plant roots by symbiotic arbuscular mycorrhizal fungi frequently leads to the accumulation of several apocarotenoids. The corresponding carotenoid precursors originate from the plastidial 2-C-methyl-d-erythritol 4-phosphate pathway. We have cloned and characterized 1-deoxy-d-xylulose 5-phosphate reductoisomerase (DXR), catalyzing the first committed step of the pathway, from maize (Zea mays). Functional identification was accomplished by heterologous expression of sequences coding for the mature protein in Escherichia coli. DXR is up-regulated in maize roots during mycorrhization as shown at transcript and protein levels, but is also abundant in leaves and young seedlings. Inspection of sequenced genomes and expressed sequence tag (EST) databases argue for a single-copy DXR gene. Immunolocalization studies in mycorrhizal roots using affinity-purified antibodies revealed a DXR localization in plastids around the main symbiotic structures, the arbuscules. DXR protein accumulation is tightly correlated with arbuscule development. The highest level of DXR protein is reached around maturity and initial senescence of these structures. We further demonstrate the formation of a DXR-containing plastidial network around arbuscules, which is highly interconnected in the mature, functional state of the arbuscules. Our findings imply a functional role of a still unknown nature for the apocarotenoids or their respective carotenoid precursors in the arbuscular life cycle.

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8

Print

  • IPB Halle
  • News
  • Lectures
  • Publications
  • Public Tendering
  • IPB Remote & Mail
  • Imprint
  • Data Protection
  • Accessibility
  • Die Leibniz-Gemeinschaft
  • Wege zu einer pflanzenbasierten Wirtschaft
  • Martin-Luther Universität Halle
  • Erfolgsfaktor Familie
  • TOTAL E-QUALITY
  • Research
    • Research Mission and Profile

    • Molecular Signal Processing

    • Bioorganic Chemistry

    • Biochemistry of Plant Interactions

    • Cell and Metabolic Biology

    • Independent Junior Research Groups

    • Program Center MetaCom

    • Publications

    • Good Scientific Practice

    • Research Funding

    • Networks and Collaborative Projects

    • Symposia and Colloquia

    • Alumni Research Groups

  • Infrastructure
    • Databases and Tools

    • Technical Resources

    • Imaging Unit

    • Greenhouses and Phytochambers

    • Library Services

  • Institute
    • Organizational Chart

    • Management and Boards

    • Administration and Infrastructure

    • Energy Management

    • Diversity, Family, Equality

    • Public Tendering

    • Patents and Licensing

    • The IPB Welcoming Culture

    • Guest Houses

    • IPB Site Map

    • Brief IPB History

    • Alumni Network

  • Career
    • Data protection information for applicants

    • PhD Program

    • Postdocs

    • Berufsausbildung

  • Public Relations
    • News

    • News Ticker Science

    • Press Releases

    • IPB Pressespiegel

    • LANGE NACHT, DIE WISSEN SCHAFFT: PROGRAMM

    • IPB Newsletter

    • Printed / Information Material

    • Scientific Reports / Research Highlights

    • Events

    • Cover Art

    • Citizen Science: Pilzberatung

  • IPB Remote & Mail