- Results as:
- Print view
- Endnote (RIS)
- BibTeX
- Table: CSV | HTML
Publications
Publications
Research Mission and Profile
Molecular Signal Processing
Bioorganic Chemistry
Biochemistry of Plant Interactions
Cell and Metabolic Biology
Independent Junior Research Groups
Program Center MetaCom
Publications
Good Scientific Practice
Research Funding
Networks and Collaborative Projects
Symposia and Colloquia
Alumni Research Groups
Publications
Allene oxide synthase (AOS) is the first enzyme in the lipoxygenase (LOX) pathway which leads to formation of jasmonic acid (JA). Two full‐length cDNAs of AOS designated as AOS1 and AOS2, respectively, were isolated from barley (H. vulgare cv. Salome) leaves, which represent the first AOS clones from a monocotyledonous species. For AOS1, the open reading frame encompasses 1461 bp encoding a polypeptide of 487 amino acids with calculated molecular mass of 53.4 kDa and an isoelectric point of 9.3, whereas the corresponding data of AOS2 are 1443 bp, 480 amino acids, 52.7 kDa and 7.9. Southern blot analysis revealed at least two genes. Despite the lack of a putative chloroplast signal peptide in both sequences, the protein co‐purified with chloroplasts and was localized within chloroplasts by immunocytochemical analysis. The barley AOSs, expressed in bacteria as active enzymes, catalyze the dehydration of LOX‐derived 9‐ as well as 13‐hydroperoxides of polyenoic fatty acids to the unstable allene oxides. In leaves, AOS mRNA accumulated upon treatment with jasmonates, octadecanoids and metabolizable carbohydrates, but not upon floating on abscisic acid, NaCl, Na‐salicylate or infection with powdery mildew. In developing seedlings, AOS mRNA strongly accumulated in the scutellar nodule, but less in the leaf base. Both tissues exhibited elevated JA levels. In situ hybridizations revealed the preferential occurrence of AOS mRNA in parenchymatic cells surrounding the vascular bundles of the scutellar nodule and in the young convoluted leaves as well as within the first internode. The properties of both barley AOSs, their up‐regulation of their mRNAs and their tissue specific expression suggest a role during seedling development and jasmonate biosynthesis.
Publications
Barley leaves respond to application of (−)‐jasmonic acid (JA), or its methylester (JM) with the synthesis of abundant proteins, so‐called jasmonate induced proteins (JIPs). Here Western blot analysis is used to show a remarkable increase upon JM treatment of a 100 kDa lipoxygenase (LOX), and the appearance of two new LOX forms of 98 and 92 kDa. The temporal increase of LOX‐100 protein upon JM treatment was clearly distinguishable from the additionally detectable LOX forms. JM‐induced LOX forms in barley leaves were compared with those of Arabidopsis and soybean leaves. Both dicot species showed a similar increase of one LOX upon JM induction, whereas, leaves from soybean responded with additional synthesis of a newly formed LOX of 94 kDa.Using immunofluorescence analysis and isolation of intact chloroplasts, it is demonstrated that JM‐induced LOX forms of barley leaves are exclusively located in the chloroplasts of all chloroplast‐containing cells. Analogous experiments carried out with Arabidopsis and soybean revealed a similar plastidic location of JM‐induced LOX forms in Arabidopsis but a different situation for soybean. In untreated soybean leaves the LOX protein was mainly restricted to vacuoles of paraveinal mesophyll cells. Additionally, LOX forms could be detected in cytoplasm and nuclei of bundle sheath cells. Upon JM treatment cytosolic LOX was detectable in spongy mesophyll cells, too. The intracellular location of JM‐induced LOX is discussed in terms of stress‐related phenomena mediated by JM.