- Results as:
- Print view
- Endnote (RIS)
- BibTeX
- Table: CSV | HTML
Books and chapters
Books and chapters
Publications
Books and chapters
Books and chapters
Books and chapters
Publications
Publications
Publications
Books and chapters
Research Mission and Profile
Molecular Signal Processing
Bioorganic Chemistry
Biochemistry of Plant Interactions
Cell and Metabolic Biology
Independent Junior Research Groups
Program Center MetaCom
Publications
Good Scientific Practice
Research Funding
Networks and Collaborative Projects
Symposia and Colloquia
Alumni Research Groups
Books and chapters
Modular cloning systems that rely on type IIS enzymes for DNA assembly have many advantages for construct engineering for biological research and synthetic biology. These systems are simple to use, efficient, and allow users to assemble multigene constructs by performing a series of one-pot assembly steps, starting from libraries of cloned and sequenced parts. The efficiency of these systems also facilitates the generation of libraries of construct variants. We describe here a protocol for assembly of multigene constructs using the modular cloning system MoClo. Making constructs using the MoClo system requires to first define the structure of the final construct to identify all basic parts and vectors required for the construction strategy. The assembly strategy is then defined following a set of standard rules. Multigene constructs are then assembled using a series of one-pot assembly steps with the set of identified parts and vectors.
Books and chapters
Efficient DNA assembly methods are an essential prerequisite in the field of synthetic biology. Modular cloning systems, which rely on Golden Gate cloning for DNA assembly, are designed to facilitate assembly of multigene constructs from libraries of standard parts through a series of streamlined one-pot assembly reactions. Standard parts consist of the DNA sequence of a genetic element of interest such as a promoter, coding sequence, or terminator, cloned in a plasmid vector. Standard parts for the modular cloning system MoClo, also called level 0 modules, must be flanked by two BsaI restriction sites in opposite orientations and should not contain internal sequences for two type IIS restriction sites, BsaI and BpiI, and optionally for a third type IIS enzyme, BsmBI. We provide here a detailed protocol for cloning of level 0 modules. This protocol requires the following steps: (1) defining the type of part that needs to be cloned, (2) designing primers for amplification, (3) performing polymerase chain reaction (PCR) amplification, (4) cloning of the fragments using Golden Gate cloning, and finally (5) sequencing of the part. For large standard parts, it is preferable to first clone sub-parts as intermediate level-1 constructs. These sub-parts are sequenced individually and are then further assembled to make the final level 0 module.
Publications
The HD-ZIP class I transcription factor, HvHOX1 (Homeobox 1) or VRS1 (Vulgare Row-type Spike 1 or Six-rowed Spike 1), regulates lateral spikelet fertility in barley (Hordeum vulgare L.). It was shown that HvHOX1 has a high expression only in lateral spikelets, while its paralog HvHOX2 was found to be expressed in different plant organs. Yet, the mechanistic function of HvHOX1 and HvHOX2 during spikelet development is still fragmentary. Here, we show that compared to HvHOX1, HvHOX2 is more highly conserved across different barley genotypes and Hordeum species, hinting at a possibly vital but still unclarified biological role. Using bimolecular fluorescence complementation, DNA-binding, and transactivation assays, we validate that HvHOX1 and HvHOX2 are bona fide transcriptional activators that may potentially heterodimerize. Accordingly, both genes exhibit similar spatiotemporal expression patterns during spike development and growth, albeit their mRNA levels differ quantitatively. We show that HvHOX1 delays the lateral spikelet meristem differentiation and affects fertility by aborting the reproductive organs. Interestingly, the ancestral relationship of these genes inferred from their co-expressed gene networks suggested that HvHOX1 and HvHOX2 might play a similar role during barley spikelet development. However, CRISPR-derived mutants of HvHOX1 and HvHOX2 demonstrated the suppressive role of HvHOX1 on lateral spikelets, while the loss of HvHOX2 does not influence spikelet development. Collectively, our study shows that through the suppression of reproductive organs, lateral spikelet fertility is regulated by HvHOX1, whereas HvHOX2 is dispensable for spikelet development in barley.
Books and chapters
Signaling proteins trigger a sequence of molecular switches in the cell, which permit development, growth, and rapid adaptation to changing environmental conditions. SCF-type E3 ubiquitin ligases recognize signaling proteins prompting changes in their fate, one of these being ubiquitylation followed by degradation by the proteasome. SCFs together with their ubiquitylation targets (substrates) often serve as phytohormone receptors, responding and/or assembling in response to fluctuating intracellular hormone concentrations. Tracing and understanding phytohormone perception and SCF-mediated ubiquitylation of proteins could provide powerful clues on the molecular mechanisms utilized for plant adaptation. Here, we describe an adaptable in vitro system that uses recombinant proteins and enables the study of hormone-triggered SCF-substrate interaction and the dynamics of protein ubiquitylation. This system can serve to predict the requirements for protein recognition and to understand how phytohormone levels have the power to control protein fate.
Books and chapters
Multicomponent reactions (MCRs) are recently expanding the plethora of solid-phase protocols for the synthesis and derivatization of peptides. Herein, we describe a solid-phase-compatible strategy based on MCRs as a powerful strategy for peptide cyclization and ligation . We illustrate, using Gramicidin S as a model peptide, how the execution of on-resin Ugi reactions enables the simultaneous backbone N-functionalization and cyclization, which are important types of derivatizations in peptide-based drug development or for incorporation of conjugation handles, or labels.
Books and chapters
Protein expression in plants by agroinfiltration and subsequent purification is increasingly used for the biochemical characterization of plant proteins. In this chapter we describe the purification of secreted, His-tagged proteases from the apoplast of agroinfiltrated Nicotiana benthamiana using immobilized metal affinity chromatography (IMAC). We show quality checks for the purified protease and discuss potential problems and ways to circumvent them. As a proof of concept, we produce and purify tomato immune protease Pip1 and demonstrate that the protein is active after purification.
Publications
Abstract The comparison of transcriptome time-courses of the first 2 h of the cold or highlight response of 24 h cold primed and naive Arabidopsis thaliana showed that priming quickly modifies gene expression in a trigger-specific manner. It dampened up- as well as down-regulation of genes in the cold and in the light. 1/3 of the priming-regulated genes were jasmonate sensitive, including the full set of genes required for oxylipin biosynthesis. qPCR-based analysis in wildtype plants and mutants demonstrated that OPDA (12-oxo phytenoic acid) biosynthesis relative to the jasmonic acid (JA) availability controls dampening of the genes for oxylipin biosynthetic enzymes: Gene regulation in oxylipin biosynthesis mutants more strongly depended on the biosynthesis of the JA precursor OPDA than on its conversion to JA. Additionally, priming-dependent dampening during triggering was more linked to OPDA than to JA level regulation and spray application of OPDA prior to triggering counteracted gene dampening. In contrast to cold-priming induced dampening of ZAT10, priming regulation of the oxylipin hub was insensitive to priming-induced accumulation of thylakoid ascorbate peroxidase and mediated by modulation of the oxylipin sensitivity of genes for OPDA biosynthesis.
Publications
Long-lasting and broad-spectrum disease resistance throughout plants is an ever-important objective in basic and applied plant and crop research. While the recent identification of N-hydroxpipecolic acid (NHP) and its central role in systemic plant immunity in the model Arabidopsis thaliana provides a conceptual framework toward this goal, Schnake et al. (2020) quantify levels of NHP and its direct precursor in six mono- and dicotyledonous plant species subsequent to attacks by their natural pathogens, thereby implicating (phloem-mobile) NHP as a general and conserved activator of disease resistance.
Publications
Infection of Arabidopsis thaliana by the ascomycete fungus Colletotrichum higginsianum is characterised by an early symptomless biotrophic phase followed by a destructive necrotrophic phase. The fungal genome contains 77 secondary metabolism-related biosynthetic gene clusters (BGCs), and their expression during the infection process is tightly regulated. Deleting CclA, a chromatin regulator involved in repression of some BGCs through H3K4 trimethylation, allowed overproduction of 3 families of terpenoids and isolation of 12 different molecules. These natural products were tested in combination with methyl jasmonate (MeJA), an elicitor of jasmonate responses, for their capacity to alter defence gene induction in Arabidopsis. Higginsianin B inhibited MeJA-triggered expression of the defence reporter VSP1p:GUS, suggesting it may block bioactive JA-Ile synthesis or signalling in planta. Using the JA-Ile sensor Jas9-VENUS, we found that higginsianin B, but not three other structurally-related molecules, suppressed JA-Ile signalling by preventing degradation of JAZ proteins, the repressors of JA responses. Higginsianin B likely blocks the 26S proteasome-dependent degradation of JAZ proteins because it inhibited chymotrypsin- and caspase-like protease activities. The inhibition of target degradation by higginsianin B also extended to auxin signalling, as higginsianin B treatment reduced IAA-dependent expression of DR5p:GUS. Overall, our data indicate that specific fungal secondary metabolites can act similarly to protein effectors to subvert plant immune and developmental responses.
Books and chapters
Jasmonates are essential engineers of plant defense responses against many pests, including herbivorous insects. Herbivory induces the production of jasmonic acid (JA) and its bioactive conjugate jasmonoyl-l-isoleucine (JA-Ile), which then triggers a large transcriptional reprogramming to promote plant acclimation. The contribution of the JA pathway, including its components and regulators, to defense responses against insect herbivory can be evaluated by conducting bioassays with a wide range of host plants and insect pests. Here, we describe a detailed and reproducible protocol for testing feeding behavior of the generalist herbivore Spodoptera littoralis on the model plant Arabidopsis thaliana and hence infer the contribution of JA-mediated plant defense responses to a chewing insect.