logo ipb
logo ipb mobile
x
  • Deutsch
  • English
Benutzeranmeldung
  • Research
    • Research Mission and Profile

    • Molecular Signal Processing

      • Secretariat & All Staff
      • Technical Resources
      • Publications
      • Research Groups
        • Nutrient Sensing
          • Projects
          • Staff
          • Publications
          • Collaborations
        • Symbiosis Signaling
          • Projects
          • Staff
          • Publications
          • Collaborations
        • Jasmonate Signaling
          • Projects
          • Staff
          • Publications
          • Collaborations
    • Bioorganic Chemistry

      • Secretariat & All Staff
      • Technical Resources
      • Publications
      • Research Groups
        • Bioactives
          • Projects
          • Staff
          • Publications
          • Collaborations
        • Natural Products & Metabolomics
          • Projects
          • Staff
          • Publications
          • Collaborations
        • Biotechnology
          • Projects
          • Staff
          • Publications
          • Collaborations
        • Biofunctional Synthesis
          • Projects
          • Staff
          • Publications
          • Collaborations
        • Computational Chemistry
          • Projects
          • Staff
          • Publications
          • Collaborations
        • Data & Resources
          • Projects
          • Staff
          • Publications
          • Collaborations
    • Biochemistry of Plant Interactions

      • Secretariat & All Staff
      • Technical Resources
      • Publications
      • Research Groups
        • Calcium-dependent Protein Kinases
          • Projects
          • Staff
          • Publications
          • Collaborations
        • Cellular Signaling
          • Projects
          • Staff
          • Publications
          • Collaborations
        • Metabolite-based Defense Mechanisms
          • Projects
          • Staff
          • Publications
          • Collaborations
        • Nuclear Processes in Plant Defense
          • Projects
          • Staff
          • Publications
          • Collaborations
    • Cell and Metabolic Biology

      • Secretariat & All Staff
      • Technical Resources
      • Publications
      • Research Groups
        • Glandular Trichomes and Isoprenoid Biosynthesis
          • Projects
          • Staff
          • Publications
          • Collaborations
        • Jasmonate Function & Mycorrhiza
          • Projects
          • Staff
          • Publications
          • Collaborations
        • Phenylpropanoid Metabolism
          • Projects
          • Staff
          • Publications
          • Collaborations
        • Synthetic Biology
          • Projects
          • Staff
          • Publications
          • Collaborations
    • Independent Junior Research Groups

      • Research Groups
        • Receptor Biochemistry
          • Projects
          • Staff
          • Publications
          • Collaborations
    • Program Center MetaCom

      • Secretariat & All staff
      • Publikationen
      • Our Equipment
      • Research Groups
        • Metabolomics Facility
          • Projects
          • Staff
          • Publications
          • Methods
        • MetaCom Analytical Laboratory
          • Projects
          • Staff
          • Publications
          • Methods
        • Computational Plant Biochemistry
          • Projects
          • Staff
          • Publications
          • Collaborations
        • MetaCom Junior Research Group
          • Projects
          • Staff
    • Publications

    • Good Scientific Practice

    • Research Funding

    • Networks and Collaborative Projects

      • Collaborative Projects as Coordinator
        • Completed Projects as Coordinator
      • Collaborative Projects as Partner
        • Completed Projects as Partner
      • Networks
    • Symposia and Colloquia

      • Lectures
        • IPB Seminars
      • Leibniz Plant Biochemistry Symposia
    • Alumni Research Groups

      • Research Groups
        • Auxin Signaling
          • Projects
          • Publications
        • Bioorganic Chemistry
          • Projects
          • Publications
        • Designer Glycans
          • Projects
          • Publications
        • Jasmonate Mode of Action
          • Publications
        • Protein Recognition and Degradation
          • Projects
          • Publications
        • Regulatory RNAs (MLU-associated group)
          • Projects
          • Publications
        • Signal Integration
          • Projects
          • Publications
        • Ubiquitination in Immunity
          • Projects
          • Publications
        • Cellular Coordination
          • Projects
          • Publications
  • Infrastructure
    • Databases and Tools

      • XCMS
      • Rdisop
      • CAMERA
      • MetShot
      • MassBank
      • MetFrag
      • MetFamily
      • PaCeQuant
      • CytoskeletonAnalyzer
      • GoldenMutagenesis
      • cisHighlight
      • FlagScreen
      • RootDetection
    • Technical Resources

    • Imaging Unit

    • Greenhouses and Phytochambers

    • Library Services

      • OPAC
      • Electronic Journals Library
      • Service for Employees
  • Institute
    • Organizational Chart

    • Management and Boards

      • Board of Trustees
      • Scientific Advisory Board
      • IPB Management / Board of Directors
      • Scientific Council
      • Authorized Representatives of the IPB
      • Staff Council
      • Statutes
    • Administration and Infrastructure

      • Secretariat & All Staff
      • Working Groups
        • Human Resources
        • Finance & Accounting
        • Purchasing
        • IT & Technical Support
        • Experimental Nursery
        • Facility Management
        • Library
        • Digitalization
    • Energy Management

      • Objectives and Measures
      • Energy Management Team
    • Diversity, Family, Equality

      • Diversity
      • Equality
      • Family Support
      • Training and further Education
      • Integration and Health
      • General Equal Treatment Act
    • Public Tendering

    • Patents and Licensing

    • The IPB Welcoming Culture

    • Guest Houses

    • IPB Site Map

    • Brief IPB History

      • Bildergalerie zur Historie
      • Alte Filmsequenzen zum Institut
      • Historischer Massenspektrograph
    • Alumni Network

      • The IPB as a career launching pad
  • Career
    • Data protection information for applicants

    • PhD Program

      • PhD Student Representatives
      • DoCou - Doctoral Training Courses
      • PSSC
    • Postdocs

    • Berufsausbildung

  • Public Relations
    • News

      • 2024
      • 2023
      • 2022
      • Archiv Aktuelles
        • 2021
        • 2020
        • 2019
        • 2018
        • 2017
        • 2016
        • 2015
        • 2014
        • vor 2014
    • News Ticker Science

      • News Ticker 2024
      • News Ticker 2023
      • News Ticker 2022
      • News Ticker Archive
        • News Ticker 2021
        • News Ticker 2020
        • News Ticker 2019
    • Press Releases

      • 2024
      • 2023
      • 2022
      • Archive Press Releases
        • 2021
        • 2020
        • 2019
        • 2018
        • 2017
        • 2016
        • 2015
        • 2014
        • 2013
        • 2012
        • 2011
        • 2010
        • 2009
        • 2008
        • 2007
        • 2006
        • 2005
        • 2004
        • 2003
        • 2002
    • IPB Pressespiegel

    • LANGE NACHT, DIE WISSEN SCHAFFT: PROGRAMM

    • IPB Newsletter

    • Printed / Information Material

    • Scientific Reports / Research Highlights

    • Events

      • 2024 Long Night of Sciences
      • 2024 Leibniz Plant Biochemistry Symposium
      • Archiv Veranstaltungen
    • Cover Art

    • Citizen Science: Pilzberatung

      • Das Reich der Pilze
      • Pilzberatung
      • Forschung an Pilzen
  • Contact
    • Directions for Visitors

    • Staff Directory

    • Imprint

    • Data Protection

    • Accessibility

  1. IPB Halle
  2. Research
  3. Publications

    • Research Mission and Profile
    • Trenner 0
    • Molecular Signal Processing
      • Secretariat & All Staff
      • Technical Resources
      • Publications
      • Research Groups
        • Nutrient Sensing
        • Symbiosis Signaling
        • Jasmonate Signaling
    • Bioorganic Chemistry
      • Secretariat & All Staff
      • Technical Resources
      • Publications
      • Research Groups
        • Bioactives
        • Natural Products & Metabolomics
        • Biotechnology
        • Biofunctional Synthesis
        • Computational Chemistry
        • Data & Resources
    • Biochemistry of Plant Interactions
      • Secretariat & All Staff
      • Technical Resources
      • Publications
      • Research Groups
        • Calcium-dependent Protein Kinases
        • Cellular Signaling
        • Metabolite-based Defense Mechanisms
        • Nuclear Processes in Plant Defense
    • Cell and Metabolic Biology
      • Secretariat & All Staff
      • Technical Resources
      • Publications
      • Research Groups
        • Glandular Trichomes and Isoprenoid Biosynthesis
        • Jasmonate Function & Mycorrhiza
        • Phenylpropanoid Metabolism
        • Synthetic Biology
    • Independent Junior Research Groups
      • Research Groups
        • Receptor Biochemistry
    • Program Center MetaCom
      • Secretariat & All staff
      • Publikationen
      • Our Equipment
      • Research Groups
        • Metabolomics Facility
        • MetaCom Analytical Laboratory
        • Computational Plant Biochemistry
        • MetaCom Junior Research Group
    • Trenner 1
    • Publications
    • Good Scientific Practice
    • Research Funding
    • Trenner
    • Networks and Collaborative Projects
      • Collaborative Projects as Coordinator
        • Completed Projects as Coordinator
      • Collaborative Projects as Partner
        • Completed Projects as Partner
      • Networks
    • Symposia and Colloquia
      • Lectures
        • IPB Seminars
      • Leibniz Plant Biochemistry Symposia
    • Trenner
    • Alumni Research Groups
      • Research Groups
        • Auxin Signaling
        • Bioorganic Chemistry
        • Designer Glycans
        • Jasmonate Mode of Action
        • Protein Recognition and Degradation
        • Regulatory RNAs (MLU-associated group)
        • Signal Integration
        • Ubiquitination in Immunity
        • Cellular Coordination

Advanced Search

  • Type of publication
    • Publication (22)
  • Year
    • 2010 (2)
      2011 (2)
      2012 (2)
      2014 (3)
      2015 (4)
      2016 (4)
      2017 (1)
      2018 (1)
      2019 (1)
      2024 (2)
  • Journal / Volume / Preprint Server Sorted by frequency and by alphabetical order
    • Phytochemistry (132)
      Plant J. (95)
      Plant Physiol. (94)
      0 (84)
      Plant Cell (55)
      Planta (54)
      bioRxiv (51)
      New Phytol. (50)
      Methods Mol. Biol. (41)
      Front. Plant Sci. (40)
      Int. J. Mol. Sci. (33)
      J. Biol. Chem. (33)
      J. Exp. Bot. (33)
      PLOS ONE (30)
      FEBS Lett. (29)
      Molecules (28)
      Vietnam J. Chem. (26)
      Proc. Natl. Acad. Sci. U.S.A. (25)
      Angew. Chem. Int. Ed. (22)
      J. Plant Physiol. (21)
      Angew. Chem. (18)
      Tetrahedron Lett. (18)
      Trends Plant Sci. (18)
      Plant Cell Physiol. (17)
      Sci. Rep. (17)
      Metabolomics (16)
      Mol. Plant Microbe Interact. (16)
      ChemBioChem (15)
      Plants (15)
      Anal. Bioanal. Chem. (14)
      BMC Plant Biol. (14)
      J. Agr. Food Chem. (14)
      J. Org. Chem. (14)
      Nat. Prod. Commun. (14)
      Plant Signal Behav. (14)
      Plant Cell Environ. (13)
      Plant Mol. Biol. (13)
      Adv. Exp. Med. Biol. (12)
      Anal. Chem. (12)
      Biochem. Syst. Ecol. (12)
      Chem. Commun. (12)
      Curr. Biol. (12)
      Curr. Opin. Plant Biol. (12)
      Food Chem. (12)
      J. Nat. Prod. (12)
      Metabolites (12)
      Org. Biomol. Chem. (12)
      Synthesis (12)
      Biol. Chem. (11)
      Eur. J. Org. Chem. (11)
      Nat. Commun. (11)
      Planta Med. (11)
      Tetrahedron (11)
      BMC Bioinformatics (10)
      J. Cheminform. (10)
      J. Mass Spectrom. (10)
      Nat. Prod. Res. (10)
      Eur. J. Med. Chem. (9)
      Mol. Plant (9)
      Synlett (9)
      Z. Naturforsch. C (9)
      Beilstein J. Org. Chem. (8)
      ChemCatChem (8)
      Fitoterapia (8)
      J. Proteome Res. (8)
      Mol. Plant Pathol. (8)
      Mycorrhiza (8)
      Phytochem. Anal. (8)
      Plant Biotechnol. J. (8)
      Proteomics (8)
      Theor. Appl. Genet. (8)
      Amino Acids (7)
      Chem.-Eur. J. (7)
      Org. Lett. (7)
      Pharmazie (7)
      Plant Growth Regul. (7)
      Plant Sci. (7)
      ACS Catal. (6)
      BIOspektrum (6)
      Bio Protoc. (6)
      Biochimie (6)
      Biomolecules (6)
      Chem. Biodivers. (6)
      Dalton Trans. (6)
      EMBO J. (6)
      Eur. J. Biochem. (6)
      J. Inorg. Biochem. (6)
      J. Med. Chem. (6)
      J. Pharm. Biomed. Anal. (6)
      Nat. Chem. Biol. (6)
      Nat. Plants (6)
      PLOS Pathog. (6)
      Physiol. Plant. (6)
      Plant Biol. (6)
      Plant Cell Tiss. Organ Cult. (6)
      RSC Adv. (6)
      Science (6)
      ACS Chem. Biol. (5)
      Anal. Biochem. (5)
      Biologie in unserer Zeit (5)
  • Author Sorted by frequency and by alphabetical order
    • Wessjohann, L. A. (5)
      Hause, B. (4)
      Westermann, B. (4)
      Neves Filho, R. A. W. (3)
      Abel, S. (2)
      Delker, C. (2)
      Denk, K. (2)
      Flitsch, S. L. (2)
      Ibañez, C. (2)
      Lee, J. (2)
      Quint, M. (2)
      Ranf, S. (2)
      Scheel, D. (2)
      Weissenborn, M. J. (2)
      Westphal, L. (2)
      Ziegler, J. (2)
      Šardzík, R. (2)
      Abbas, M. (1)
      Ahmad, M. (1)
      Altamura, M. M. (1)
      Andrade, C. K. Z. (1)
      Anwer, M. U. (1)
      Barreto, A. d. F. S. (1)
      Becker, S. (1)
      Bellstädt, J. (1)
      Bennewitz, S. (1)
      Berardinis, F. D. (1)
      Bergau, N. (1)
      Brauer, M. C. N. (1)
      Chen, S. (1)
      Davis, S. J. (1)
      Della Rovere, F. (1)
      Dissmeyer, N. (1)
      Dubberke, S. (1)
      Egea-Cortines, M. (1)
      Eschen-Lippold, L. (1)
      Eyers, C. E. (1)
      Falasca, G. (1)
      Fattorini, L. (1)
      Forneck, A. (1)
      Fröhlich, K. (1)
      Fujiyama, K. (1)
      Glöckner, A. (1)
      Gogol-Döring, A. (1)
      Gray, C. J. (1)
      Griesser, M. (1)
      Grimmer, J. (1)
      Guevara, D. (1)
      Guthörl, D. (1)
      Gutierrez, L. (1)
      Hammann, P. (1)
      Harashima, H. (1)
      Hause, G. (1)
      Heinke, R. (1)
      Hoecker, U. (1)
      Hoehenwarter, W. (1)
      Holtkotte, X. (1)
      Janik, K. (1)
      Kajiura, H. (1)
      Kaluđerović, G. N. (1)
      Khalil, S. (1)
      Klösgen, R. B. (1)
      Kramer, K. (1)
      Kufka, R. (1)
      Lee Erickson, J. (1)
      Leson, L. (1)
      Lindhorst, T. K. (1)
      Lischewski, S. (1)
      Lischweski, S. (1)
      Lodovici, A. (1)
      Lory, N. (1)
      Majovsky, P. (1)
      Mallona, I. (1)
      Martin, A. (1)
      Mathur, J. (1)
      Mittelberger, C. (1)
      Moser, M. (1)
      Muchow, A. (1)
      Mönchgesang, S. (1)
      Müller, J. (1)
      Nakagami, H. (1)
      Neumann, S. (1)
      Ni, M. (1)
      Noble, G. T. (1)
      Nomura, Y. (1)
      Novak, M. P. (1)
      Peterson, T. (1)
      Piacentini, D. (1)
      Poeschl, Y. (1)
      Raschke, A. (1)
      Rennert, R. (1)
      Richter, W. (1)
      Rothstein, S. J. (1)
      Saal, B. (1)
      Schattat, M. H. (1)
      Schenkel, C. (1)
      Schnittger, A. (1)
      Stark, S. (1)
      Stauber, J. (1)
      Strah, R. (1)
  • Year
  • Type of publication
Search narrowed by: Journal / Volume / Preprint Server Sorted by frequency and by alphabetical order: BMC Plant Biol. Journal / Volume / Preprint Server Sorted by frequency and by alphabetical order: Beilstein J. Org. Chem. Remove all filters
Displaying results 1 to 10 of 22.
  • Results as:
  • Print view
  • Endnote (RIS)
  • BibTeX
  • Table: CSV | HTML
Results per page:
  • 1
  • 2
  • 3

Publications

Mittelberger, C.; Moser, M.; Hause, B.; Janik, K.; ‘Candidatus Phytoplasma mali’ SAP11-Like protein modulates expression of genes involved in energy production, photosynthesis, and defense in Nicotiana occidentalis leaves BMC Plant Biol. 24 393 (2024) DOI: 10.1186/s12870-024-05087-4
  • Abstract
  • Internet
  • BibText
  • RIS

Background ‘Candidatus Phytoplasma mali’, the causal agent of apple proliferation disease, exerts influence on its host plant through various effector proteins, including SAP11CaPm which interacts with different TEOSINTE BRANCHED1/ CYCLOIDEA/ PROLIFERATING CELL FACTOR 1 and 2 (TCP) transcription factors. This study examines the transcriptional response of the plant upon early expression of SAP11CaPm. For that purpose, leaves of Nicotiana occidentalis H.-M. Wheeler were Agrobacterium-infiltrated to induce transient expression of SAP11CaPm and changes in the transcriptome were recorded until 5 days post infiltration.Results The RNA-seq analysis revealed that presence of SAP11CaPm in leaves leads to downregulation of genes involved in defense response and related to photosynthetic processes, while expression of genes involved in energy production was enhanced.Conclusions The results indicate that early SAP11CaPm expression might be important for the colonization of the host plant since phytoplasmas lack many metabolic genes and are thus dependent on metabolites from their host plant.

Publications

Khalil, S.; Strah, R.; Lodovici, A.; Vojta, P.; Berardinis, F. D.; Ziegler, J.; Novak, M. P.; Zanin, L.; Tomasi, N.; Forneck, A.; Griesser, M.; The activation of iron deficiency responses of grapevine rootstocks is dependent to the availability of the nitrogen forms BMC Plant Biol. 24 218 (2024) DOI: 10.1186/s12870-024-04906-y
  • Abstract
  • Internet
  • BibText
  • RIS

Background  In viticulture, iron (Fe) chlorosis is a common abiotic stress that impairs plant development and leads to yield and quality losses. Under low availability of the metal, the applied N form (nitrate and ammonium) can play a role in promoting or mitigating Fe deficiency stresses. However, the processes involved are not clear in grapevine. Therefore, the aim of this study was to investigate the response of two grapevine rootstocks to the interaction between N forms and Fe uptake. This process was evaluated in a hydroponic experiment using two ungrafted grapevine rootstocks Fercal (Vitis berlandieri x V. vinifera) tolerant to deficiency induced Fe chlorosis and Couderc 3309 (V. riparia x V. rupestris) susceptible to deficiency induced Fe chlorosis. Results  The results could differentiate Fe deficiency effects, N-forms effects, and rootstock effects. Interveinal chlorosis of young leaves appeared earlier on 3309 C from the second week of treatment with NO3−/NH4+ (1:0)/-Fe, while Fercal leaves showed less severe symptoms after four weeks of treatment, corresponding to decreased chlorophyll concentrations lowered by 75% in 3309 C and 57% in Fercal. Ferric chelate reductase (FCR) activity was by trend enhanced under Fe deficiency in Fercal with both N combinations, whereas 3309 C showed an increase in FCR activity under Fe deficiency only with NO3−/NH4+ (1:1) treatment. With the transcriptome analysis, Gene Ontology (GO) revealed multiple biological processes and molecular functions that were significantly regulated in grapevine rootstocks under Fe-deficient conditions, with more genes regulated in Fercal responses, especially when both forms of N were supplied. Furthermore, the expression of genes involved in the auxin and abscisic acid metabolic pathways was markedly increased by the equal supply of both forms of N under Fe deficiency conditions. In addition, changes in the expression of genes related to Fe uptake, regulation, and transport reflected the different responses of the two grapevine rootstocks to different N forms. Conclusions  Results show a clear contribution of N forms to the response of the two grapevine rootstocks under Fe deficiency, highlighting the importance of providing both N forms (nitrate and ammonium) in an appropriate ratio in order to ease the rootstock responses to Fe deficiency.

Publications

Kufka, R.; Rennert, R.; Kaluđerović, G. N.; Weber, L.; Richter, W.; Wessjohann, L. A.; Synthesis of a tubugi-1-toxin conjugate by a modulizable disulfide linker system with a neuropeptide Y analogue showing selectivity for hY1R-overexpressing tumor cells Beilstein J. Org. Chem. 15 96-105 (2019) DOI: 10.3762/bjoc.15.11
  • Abstract
  • BibText
  • RIS

Tubugi-1 is a small cytotoxic peptide with picomolar cytotoxicity. To improve its cancer cell targeting, it was conjugated using a universal, modular disulfide derivative. This allowed conjugation to a neuropeptide-Y (NPY)-inspired peptide [K4(C-βA-),F7,L17,P34]-hNPY, acting as NPY Y1 receptor (hY1R)-targeting peptide, to form a tubugi-1–SS–NPY disulfide-linked conjugate. The cytotoxic impacts of the novel tubugi-1–NPY peptide–toxin conjugate, as well as of free tubugi-1, and tubugi-1 bearing the thiol spacer (liberated from tubugi-1–NPY conjugate), and native tubulysin A as reference were investigated by in vitro cell viability and proliferation screenings. The tumor cell lines HT-29, Colo320 (both colon cancer), PC-3 (prostate cancer), and in conjunction with RT-qPCR analyses of the hY1R expression, the cell lines SK-N-MC (Ewing`s sarcoma), MDA-MB-468, MDA-MB-231 (both breast cancer) and 184B5 (normal breast; chemically transformed) were investigated. As hoped, the toxicity of tubugi-1 was masked, with IC50 values decreased by ca. 1,000-fold compared to the free toxin. Due to intracellular linker cleavage, the cytotoxic potency of the liberated tubugi-1 that, however, still bears the thiol spacer (tubugi-1-SH) was restored and up to 10-fold higher compared to the entire peptide–toxin conjugate. The conjugate shows toxic selectivity to tumor cell lines overexpressing the hY1R receptor subtype like, e.g., the hard to treat triple-negative breast cancer MDA-MB-468 cells.

Publications

Fattorini, L.; Hause, B.; Gutierrez, L.; Veloccia, A.; Della Rovere, F.; Piacentini, D.; Falasca, G.; Altamura, M. M.; Jasmonate promotes auxin-induced adventitious rooting in dark-grown Arabidopsis thaliana seedlings and stem thin cell layers by a cross-talk with ethylene signalling and a modulation of xylogenesis BMC Plant Biol. 18 182 (2018) DOI: 10.1186/s12870-018-1392-4
  • Abstract
  • BibText
  • RIS

BackgroundAdventitious roots (ARs) are often necessary for plant survival, and essential for successful micropropagation. In Arabidopsis thaliana dark-grown seedlings AR-formation occurs from the hypocotyl and is enhanced by application of indole-3-butyric acid (IBA) combined with kinetin (Kin). The same IBA + Kin-treatment induces AR-formation in thin cell layers (TCLs). Auxin is the main inducer of AR-formation and xylogenesis in numerous species and experimental systems. Xylogenesis is competitive to AR-formation in Arabidopsis hypocotyls and TCLs. Jasmonates (JAs) negatively affect AR-formation in de-etiolated Arabidopsis seedlings, but positively affect both AR-formation and xylogenesis in tobacco dark-grown IBA + Kin TCLs. In Arabidopsis the interplay between JAs and auxin in AR-formation vs xylogenesis needs investigation. In de-etiolated Arabidopsis seedlings, the Auxin Response Factors ARF6 and ARF8 positively regulate AR-formation and ARF17 negatively affects the process, but their role in xylogenesis is unknown. The cross-talk between auxin and ethylene (ET) is also important for AR-formation and xylogenesis, occurring through EIN3/EIL1 signalling pathway. EIN3/EIL1 is the direct link for JA and ET-signalling. The research investigated JA role on AR-formation and xylogenesis in Arabidopsis dark-grown seedlings and TCLs, and the relationship with ET and auxin. The JA-donor methyl-jasmonate (MeJA), and/or the ET precursor 1-aminocyclopropane-1-carboxylic acid were applied, and the response of mutants in JA-synthesis and -signalling, and ET-signalling investigated. Endogenous levels of auxin, JA and JA-related compounds, and ARF6, ARF8 and ARF17 expression were monitored.ResultsMeJA, at 0.01 μM, enhances AR-formation, when combined with IBA + Kin, and the response of the early-JA-biosynthesis mutant dde2–2 and the JA-signalling mutant coi1–16 confirmed this result. JA levels early change during TCL-culture, and JA/JA-Ile is immunolocalized in AR-tips and xylogenic cells. The high AR-response of the late JA-biosynthesis mutant opr3 suggests a positive action also of 12-oxophytodienoic acid on AR-formation. The crosstalk between JA and ET-signalling by EIN3/EIL1 is critical for AR-formation, and involves a competitive modulation of xylogenesis. Xylogenesis is enhanced by a MeJA concentration repressing AR-formation, and is positively related to ARF17 expression.ConclusionsThe JA concentration-dependent role on AR-formation and xylogenesis, and the interaction with ET opens the way to applications in the micropropagation of recalcitrant species.

Publications

Ibañez, C.; Poeschl, Y.; Peterson, T.; Bellstädt, J.; Denk, K.; Gogol-Döring, A.; Quint, M.; Delker, C.; Ambient temperature and genotype differentially affect developmental and phenotypic plasticity in Arabidopsis thaliana BMC Plant Biol. 17 114 (2017) DOI: 10.1186/s12870-017-1068-5
  • Abstract
  • BibText
  • RIS

BackgroundGlobal increase in ambient temperatures constitute a significant challenge to wild and cultivated plant species. Forward genetic analyses of individual temperature-responsive traits have resulted in the identification of several signaling and response components. However, a comprehensive knowledge about temperature sensitivity of different developmental stages and the contribution of natural variation is still scarce and fragmented at best.ResultsHere, we systematically analyze thermomorphogenesis throughout a complete life cycle in ten natural Arabidopsis thaliana accessions grown under long day conditions in four different temperatures ranging from 16 to 28 °C. We used Q10, GxE, phenotypic divergence and correlation analyses to assess temperature sensitivity and genotype effects of more than 30 morphometric and developmental traits representing five phenotype classes. We found that genotype and temperature differentially affected plant growth and development with variing strengths. Furthermore, overall correlations among phenotypic temperature responses was relatively low which seems to be caused by differential capacities for temperature adaptations of individual accessions.ConclusionGenotype-specific temperature responses may be attractive targets for future forward genetic approaches and accession-specific thermomorphogenesis maps may aid the assessment of functional relevance of known and novel regulatory components.

Publications

Trempel, F.; Kajiura, H.; Ranf, S.; Grimmer, J.; Westphal, L.; Zipfel, C.; Scheel, D.; Fujiyama, K.; Lee, J.; Altered glycosylation of exported proteins, including surface immune receptors, compromises calcium and downstream signaling responses to microbe-associated molecular patterns in Arabidopsis thaliana BMC Plant Biol. 16 31 (2016) DOI: 10.1186/s12870-016-0718-3
  • Abstract
  • BibText
  • RIS

BackgroundCalcium, as a second messenger, transduces extracellular signals into cellular reactions. A rise in cytosolic calcium concentration is one of the first plant responses after exposure to microbe-associated molecular patterns (MAMPs). We reported previously the isolation of Arabidopsis thaliana mutants with a “changed calcium elevation” (cce) response to flg22, a 22-amino-acid MAMP derived from bacterial flagellin.ResultsHere, we characterized the cce2 mutant and its weaker allelic mutant, cce3. Besides flg22, the mutants respond with a reduced calcium elevation to several other MAMPs and a plant endogenous peptide that is proteolytically processed from pre-pro-proteins during wounding. Downstream defense-related events such flg22-induced mitogen-activated protein kinase activation, accumulation of reactive oxygen species and growth arrest are also attenuated in cce2/cce3. By genetic mapping, next-generation sequencing and allelism assay, CCE2/CCE3 was identified to be ALG3 (Asparagine-linked glycosylation 3). This encodes the α-1,3-mannosyltransferase responsible for the first step of core oligosaccharide Glc3Man9GlcNAc2 glycan assembly on the endoplasmic reticulum (ER) luminal side. Complementation assays and glycan analysis in yeast alg3 mutant confirmed the reduced enzymatic function of the proteins encoded by the cce2/cce3 alleles – leading to accumulation of M5ER, the immature five mannose-containing oligosaccharide structure found in the ER. Proper protein glycosylation is required for ER/Golgi processing and trafficking of membrane proteins to the plasma membrane. Endoglycosidase H-insensitivity of flg22 receptor, FLS2, in the cce2/cce3 mutants suggests altered glycan structures in the receptor.ConclusionProper glycosylation of MAMP receptors (or other exported proteins) is required for optimal responses to MAMPs and is important for immune signaling of host plants.

Publications

Hoehenwarter, W.; Mönchgesang, S.; Neumann, S.; Majovsky, P.; Abel, S.; Müller, J.; Comparative expression profiling reveals a role of the root apoplast in local phosphate response BMC Plant Biol. 16 106 (2016) DOI: 10.1186/s12870-016-0790-8
  • Abstract
  • BibText
  • RIS

BackgroundPlant adaptation to limited phosphate availability comprises a wide range of responses to conserve and remobilize internal phosphate sources and to enhance phosphate acquisition. Vigorous restructuring of root system architecture provides a developmental strategy for topsoil exploration and phosphate scavenging. Changes in external phosphate availability are locally sensed at root tips and adjust root growth by modulating cell expansion and cell division. The functionally interacting Arabidopsis genes, LOW PHOSPHATE RESPONSE 1 and 2 (LPR1/LPR2) and PHOSPHATE DEFICIENCY RESPONSE 2 (PDR2), are key components of root phosphate sensing. We recently demonstrated that the LOW PHOSPHATE RESPONSE 1 - PHOSPHATE DEFICIENCY RESPONSE 2 (LPR1-PDR2) module mediates apoplastic deposition of ferric iron (Fe3+) in the growing root tip during phosphate limitation. Iron deposition coincides with sites of reactive oxygen species generation and triggers cell wall thickening and callose accumulation, which interfere with cell-to-cell communication and inhibit root growth.ResultsWe took advantage of the opposite phosphate-conditional root phenotype of the phosphate deficiency response 2 mutant (hypersensitive) and low phosphate response 1 and 2 double mutant (insensitive) to investigate the phosphate dependent regulation of gene and protein expression in roots using genome-wide transcriptome and proteome analysis. We observed an overrepresentation of genes and proteins that are involved in the regulation of iron homeostasis, cell wall remodeling and reactive oxygen species formation, and we highlight a number of candidate genes with a potential function in root adaptation to limited phosphate availability. Our experiments reveal that FERRIC REDUCTASE DEFECTIVE 3 mediated, apoplastic iron redistribution, but not intracellular iron uptake and iron storage, triggers phosphate-dependent root growth modulation. We further highlight expressional changes of several cell wall-modifying enzymes and provide evidence for adjustment of the pectin network at sites of iron accumulation in the root.ConclusionOur study reveals new aspects of the elaborate interplay between phosphate starvation responses and changes in iron homeostasis. The results emphasize the importance of apoplastic iron redistribution to mediate phosphate-dependent root growth adjustment and suggest an important role for citrate in phosphate-dependent apoplastic iron transport. We further demonstrate that root growth modulation correlates with an altered expression of cell wall modifying enzymes and changes in the pectin network of the phosphate-deprived root tip, supporting the hypothesis that pectins are involved in iron binding and/or phosphate mobilization.

Publications

Harashima, H.; Dissmeyer, N.; Hammann, P.; Nomura, Y.; Kramer, K.; Nakagami, H.; Schnittger, A.; Modulation of plant growth in vivo and identification of kinase substrates using an analog-sensitive variant of CYCLIN-DEPENDENT KINASE A;1 BMC Plant Biol. 16 209 (2016) DOI: 10.1186/s12870-016-0900-7
  • Abstract
  • BibText
  • RIS

BackgroundModulation of protein activity by phosphorylation through kinases and subsequent de-phosphorylation by phosphatases is one of the most prominent cellular control mechanisms. Thus, identification of kinase substrates is pivotal for the understanding of many – if not all – molecular biological processes. Equally, the possibility to deliberately tune kinase activity is of great value to analyze the biological process controlled by a particular kinase.ResultsHere we have applied a chemical genetic approach and generated an analog-sensitive version of CDKA;1, the central cell-cycle regulator in Arabidopsis and homolog of the yeast Cdc2/CDC28 kinases. This variant could largely rescue a cdka;1 mutant and is biochemically active, albeit less than the wild type. Applying bulky kinase inhibitors allowed the reduction of kinase activity in an organismic context in vivo and the modulation of plant growth. To isolate CDK substrates, we have adopted a two-dimensional differential gel electrophoresis strategy, and searched for proteins that showed mobility changes in fluorescently labeled extracts from plants expressing the analog-sensitive version of CDKA;1 with and without adding a bulky ATP variant. A pilot set of five proteins involved in a range of different processes could be confirmed in independent kinase assays to be phosphorylated by CDKA;1 approving the applicability of the here-developed method to identify substrates.ConclusionThe here presented generation of an analog-sensitive CDKA;1 version is functional and represent a novel tool to modulate kinase activity in vivo and identify kinase substrates. Our here performed pilot screen led to the identification of CDK targets that link cell proliferation control to sugar metabolism, proline proteolysis, and glucosinolate production providing a hint how cell proliferation and growth are integrated with plant development and physiology.

Publications

Chen, S.; Wirthmueller, L.; Stauber, J.; Lory, N.; Holtkotte, X.; Leson, L.; Schenkel, C.; Ahmad, M.; Hoecker, U.; The functional divergence between SPA1 and SPA2 in Arabidopsis photomorphogenesis maps primarily to the respective N-terminal kinase-like domain BMC Plant Biol. 16 165 (2016) DOI: 10.1186/s12870-016-0854-9
  • Abstract
  • BibText
  • RIS

BackgroundPlants have evolved complex mechanisms to adapt growth and development to the light environment. The COP1/SPA complex is a key repressor of photomorphogenesis in dark-grown Arabidopsis plants and acts as an E3 ubiquitin ligase to ubiquitinate transcription factors involved in the light response. In the light, COP1/SPA activity is inhibited by photoreceptors, thereby allowing accumulation of these transcription factors and a subsequent light response. Previous results have shown that the four members of the SPA family exhibit partially divergent functions. In particular, SPA1 and SPA2 strongly differ in their responsiveness to light, while they have indistinguishable activities in darkness. The much higher light-responsiveness of SPA2 is partially explained by the much stronger light-induced degradation of SPA2 when compared to SPA1. Here, we have conducted SPA1/SPA2 domain swap experiments to identify the protein domain(s) responsible for the functional divergence between SPA1 and SPA2.ResultsWe have individually swapped the three domains between SPA1 and SPA2 - the N-terminal kinase-like domain, the coiled-coil domain and the WD-repeat domain - and expressed them in spa mutant Arabidopsis plants. The phenotypes of transgenic seedlings show that the respective N-terminal kinase-like domain is primarily responsible for the respective light-responsiveness of SPA1 and SPA2. Furthermore, the most divergent part of the N-terminal domain was sufficient to confer a SPA1- or SPA2-like activity to the respective SPA protein. The stronger light-induced degradation of SPA2 when compared to SPA1 was also primarily conferred by the SPA2 N-terminal domain. At last, the different affinities of SPA1 and SPA2 for cryptochrome 2 are defined by the N-terminal domain of the respective SPA protein. In contrast, both SPA1 and SPA2 similarly interacted with COP1 in light-grown seedlings.ConclusionsOur results show that the distinct activities and protein stabilities of SPA1 and SPA2 in light-grown seedlings are primarily encoded by their N-terminal kinase-like domains. Similarly, the different affinities of SPA1 and SPA2 for cry2 are explained by their respective N-terminal domain. Hence, after a duplication event during evolution, the N-terminal domains of SPA1 and SPA2 underwent subfunctionalization, possibly to allow optimal adaptation of growth and development to a changing light environment.

Publications

Bergau, N.; Bennewitz, S.; Syrowatka, F.; Hause, G.; Tissier, A.; The development of type VI glandular trichomes in the cultivated tomato Solanum lycopersicum and a related wild species S. habrochaites BMC Plant Biol. 15 289 (2015) DOI: 10.1186/s12870-015-0678-z
  • Abstract
  • BibText
  • RIS

BackgroundType VI glandular trichomes represent the most abundant trichome type on leaves and stems of tomato plants and significantly contribute to herbivore resistance, particularly in the wild species. Despite this, their development has been poorly studied so far. The goal of this study is to fill this gap. Using a variety of cell imaging techniques, a detailed record of the anatomy and developmental stages of type VI trichomes in the cultivated tomato (Solanum lycopersicum) and in a related wild species (S. habrochaites) is provided.ResultsIn both species, the development of these structures follows a highly reproducible cell division pattern. The two species differ in the shape of the trichome head which is round in S. habrochaites and like a four-leaf clover in S. lycopersicum, correlating with the presence of a large intercellular cavity in S. habrochaites where the produced metabolites accumulate. In both species, the junction between the intermediate cell and the four glandular cells constitute a breaking point facilitating the decapitation of the trichome and thereby the quick release of the metabolites. A strongly auto-fluorescent compound transiently accumulates in the early stages of development suggesting a potential role in the differentiation process. Finally, immuno-labelling with antibodies recognizing specific cell wall components indicate a key role of pectin and arabinogalactan components in the differentiation of type VI trichomes.ConclusionsOur observations explain the adaptive morphologies of type VI trichomes for metabolite storage and release and provide a framework for further studies of these important metabolic cellular factories. This is required to better exploit their potential, in particular for the breeding of pest resistance in tomato.

  • 1
  • 2
  • 3

Print

  • IPB Halle
  • News
  • Lectures
  • Publications
  • Public Tendering
  • IPB Remote & Mail
  • Imprint
  • Data Protection
  • Accessibility
  • Die Leibniz-Gemeinschaft
  • Wege zu einer pflanzenbasierten Wirtschaft
  • Martin-Luther Universität Halle
  • Erfolgsfaktor Familie
  • TOTAL E-QUALITY
  • Research
    • Research Mission and Profile

    • Molecular Signal Processing

    • Bioorganic Chemistry

    • Biochemistry of Plant Interactions

    • Cell and Metabolic Biology

    • Independent Junior Research Groups

    • Program Center MetaCom

    • Publications

    • Good Scientific Practice

    • Research Funding

    • Networks and Collaborative Projects

    • Symposia and Colloquia

    • Alumni Research Groups

  • Infrastructure
    • Databases and Tools

    • Technical Resources

    • Imaging Unit

    • Greenhouses and Phytochambers

    • Library Services

  • Institute
    • Organizational Chart

    • Management and Boards

    • Administration and Infrastructure

    • Energy Management

    • Diversity, Family, Equality

    • Public Tendering

    • Patents and Licensing

    • The IPB Welcoming Culture

    • Guest Houses

    • IPB Site Map

    • Brief IPB History

    • Alumni Network

  • Career
    • Data protection information for applicants

    • PhD Program

    • Postdocs

    • Berufsausbildung

  • Public Relations
    • News

    • News Ticker Science

    • Press Releases

    • IPB Pressespiegel

    • LANGE NACHT, DIE WISSEN SCHAFFT: PROGRAMM

    • IPB Newsletter

    • Printed / Information Material

    • Scientific Reports / Research Highlights

    • Events

    • Cover Art

    • Citizen Science: Pilzberatung

  • IPB Remote & Mail