- Results as:
- Print view
- Endnote (RIS)
- BibTeX
- Table: CSV | HTML
Publications
Publications
Publications
Publications
Publications
Publications
Publications
Publications
Publications
Publications
Research Mission and Profile
Molecular Signal Processing
Bioorganic Chemistry
Biochemistry of Plant Interactions
Cell and Metabolic Biology
Independent Junior Research Groups
Program Center MetaCom
Publications
Good Scientific Practice
Research Funding
Networks and Collaborative Projects
Symposia and Colloquia
Alumni Research Groups
Publications
0
Publications
Colonization of the roots of leek (Allium porrum L.) by the arbuscular mycorrhizal fungus Glomus intraradices induced the formation of apocarotenoids, whose accumulation has been studied over a period of 25 weeks. Whereas the increase in the levels of the dominating cyclohexenone derivatives resembles the enhancement of root length colonization, the content of mycorradicin derivatives remains relatively low throughout. Structural analysis of the cyclohexenone derivatives by mass spectrometry and NMR spectroscopy showed that they are mono- and diglycosides of 13-hydroxyblumenol C and blumenol C acylated with 3-hydroxy-3-methyl-glutaric and/or malonic acid. Along with the isolation of three known compounds five others are shown to be hitherto unknown members of the fast-growing family of mycorrhiza-induced cyclohexenone conjugates.
Publications
Several mammalian peptide hormones and proteins from plant and animal origin contain an N-terminal pyroglutamic acid (pGlu) residue. Frequently, the moiety is important in exerting biological function in either mediating interaction with receptors or stabilizing against N-terminal degradation. Glutaminyl cyclases (QCs) were isolated from different plants and animals catalyzing pGlu formation. The recent resolution of the 3D structures of Carica papaya and human QCs clearly supports different evolutionary origins of the proteins, which is also reflected by different enzymatic mechanisms. The broad substrate specificity is revealed by the heterogeneity of physiological substrates of plant and animal QCs, including cytokines, matrix proteins and pathogenesis-related proteins. Moreover, recent evidence also suggests human QC as a catalyst of pGlu formation at the N-terminus of amyloid peptides, which contribute to Alzheimer's disease. Obviously, owing to its biophysical properties, the function of pGlu in plant and animal proteins is very similar in terms of stabilizing or mediating protein and peptide structure. It is possible that the requirement for catalysis of pGlu formation under physiological conditions may have triggered separate evolution of QCs in plants and animals.
Publications
The mutualistic interaction of plants with arbuscular mycorrhizal (AM) fungi is characterized by an exchange of nutrients. The plant provides sugars in the form of hexoses to the heterotrophic fungus in return for phosphate as well as nitrogen, water, and micronutrients. Plant sucrose-cleaving enzymes are predicted to play a crucial role in hexose mobilization as these enzymes appear to be absent in the fungal partner. Here, recent findings concerning the function of plant apoplastic invertases in the AM symbiosis are discussed. Plants with modulated enzyme activity in roots and leaves provide additional insight on the complexity of the regulation of the AM interaction by apoplastic invertases as mycorrhization could be reduced or stimulated depending on the level of invertase activity and its tissue-specific expression.
Publications
Acridone alkaloids formed by acridone synthase in Ruta graveolens L. are composed of N ‐methylanthraniloyl CoA and malonyl CoAs. A 1095 bp cDNA from elicited Ruta cells was expressed in Escherichia coli , and shown to encode S‐ adenosyl‐l ‐methionine‐dependent anthranilate N ‐methyltransferase. SDS–PAGE of the purified enzyme revealed a mass of 40 ± 2 kDa, corresponding to 40 059 Da for the translated polypeptide, whereas the catalytic activity was assigned to a homodimer. Alignments revealed closest relationships to catechol or caffeate O ‐methyltransferases at 56% and 55% identity (73% similarity), respectively, with little similarity (∼20%) to N ‐methyltransferases for purines, putrescine, glycine, or nicotinic acid substrates. Notably, a single Asn residue replacing Glu that is conserved in caffeate O ‐methyltransferases determines the catalytic efficiency. The recombinant enzyme showed narrow specificity for anthranilate, and did not methylate catechol, salicylate, caffeate, or 3‐ and 4‐aminobenzoate. Moreover, anthraniloyl CoA was not accepted. As Ruta graveolens acridone synthase also does not accept anthraniloyl CoA as a starter substrate, the anthranilate N ‐methylation prior to CoA activation is a key step in acridone alkaloid formation, channelling anthranilate from primary into secondary branch pathways, and holds promise for biotechnological applications. RT‐PCR amplifications and Western blotting revealed expression of the N ‐methyltransferase in all organs of Ruta plants, particularly in the flower and root, mainly associated with vascular tissues. This expression correlated with the pattern reported previously for expression of acridone synthase and acridone alkaloid accumulation.
Publications
A small parallel library of peptoid macrocycles with natural-product-derived side chains of biological importance was produced by Ugi-type multiple multicomponent macrocyclizations including bifunctional building blocks (Ugi-MiBs). Diverse exocyclic elements of high relevance in natural recognition processes, i.e., all functional amino acid residues (e.g., Cys, Arg, His, Trp) and even sugar moieties, can be introduced in a one-pot process into different types of peptoid-containing macrocyclic skeletons. This is exemplified by the use of a diamine/diisocyanide combination of Ugi-MiBs and N-protected α-amino acids or carboxy-functionalized carbohydrates as source for the natural-product-like exocyclic elements. Employed as the acid components of the multiple Ugi reactions, they appear as N-amide substituents on the macrocyclic cores. The use of different diamines and diisocyanides allows an easy variation of the N- to C-directionality and therefore of the position of the exocyclic elements.
Publications
Bile acids are important scaffolds in medicinal and supramolecular chemistry. However, the use of seco bile acids, i.e., bile acids with opened rings, as cores or building blocks for the assembly of complex peptide conjugates or macrocycles has remained elusive so far. A biomimetic approach to secocholanes, based on an oxidative ring-expansion/ring-opening sequence, offers efficient access to novel structures with tunable flexibility and functionality. The process preserves selected portions of the original stereochemical and functional information of the steroid, while additional structural elements are incorporated in further (diversity-generating) steps. The potential of these building blocks for peptide and macrocycle chemistry is exemplified by the attachment of relevant α-amino acids and by the production of various complex macrocycles obtained by conventional (e.g., macrolactonization and macrolactamization) and multicomponent (e.g., Ugi four-component) macrocyclizations. This combination of secocholanic skeleton manipulation with, e.g., varied types of macrocyclization protocols, produces high levels of skeletal diversity and complexity. Therefore, this approach may have applicability either for the synthesis of biologically active ligands or as artificial receptors (“hosts”).
Publications
SKP1-Cullin1-F-box protein (SCF) ubiquitin-ligases regulate numerous aspects of eukaryotic growth and development. Cullin-Associated and Neddylation-Dissociated (CAND1) modulates SCF function through its interactions with the CUL1 subunit. Although biochemical studies with human CAND1 suggested that CAND1 plays a negative regulatory role by sequestering CUL1 and preventing SCF complex assembly, genetic studies in Arabidopsis have shown that cand1 mutants exhibit reduced SCF activity, demonstrating that CAND1 is required for optimal SCF function in vivo. Together, these genetic and biochemical studies have suggested a model of CAND1-mediated cycles of SCF complex assembly and disassembly. Here, using the SCFTIR1 complex of the Arabidopsis auxin response pathway, we test the SCF cycling model with Arabidopsis mutant derivatives of CAND1 and CUL1 that have opposing effects on the CAND1–CUL1 interaction. We find that the disruption of the CAND1–CUL1 interaction results in an increased abundance of assembled SCFTIR1 complex. In contrast, stabilization of the CAND1–CUL1 interaction diminishes SCFTIR1 complex abundance. The fact that both decreased and increased CAND1–CUL1 interactions result in reduced SCFTIR1 activity in vivo strongly supports the hypothesis that CAND1-mediated cycling is required for optimal SCF function.
Publications
Investigations using inhibitors of dipeptidyl peptidase IV (DP IV) activities and DP IV-/- mice indicated an immunoregulatory role of DP IV that could not be compensated by DP IV-like enzymes. The HIV-1 Tat protein was identified as the first natural inhibitor of DP IV and as immunosuppressor. This review summarizes our investigations on the identification of the amino acid motif of Tat responsible for DP IV inhibition and of endogenous DP IV-inhibitory ligands that suppress immune cell activation. Examinations on numerous peptides carrying the N-terminal Xaa-Xaa-Pro motif of Tat revealed that tryptophan at position two strongly enhanced DP IV inhibition and immunosuppression. Here, we present evidence that the thromboxane A2 receptor exposing N-terminal Met-Trp-Pro at the cell surface could be a potential endogenous, inhibitory DP IV ligand. Moreover, our data suggest that the major envelope proteins p37k of the orhtopoxviruses variola virus and vaccinia virus, as well as the B2L antigen of the parapoxvirus orf, that also carry N-terminal Met-Trp-Pro, could mediate immunosuppressive effects. Further examinations are in progress to identify new physiologic, inhibitory DP IV ligands and to enlighten the mechanism underlying the DP IV-mediated effects.
Publications
0