logo ipb
logo ipb mobile
x
  • Deutsch
  • English
Benutzeranmeldung
  • Research
    • Research Mission and Profile

    • Molecular Signal Processing

      • Secretariat & All Staff
      • Technical Resources
      • Publications
      • Research Groups
        • Nutrient Sensing
          • Projects
          • Staff
          • Publications
          • Collaborations
        • Symbiosis Signaling
          • Projects
          • Staff
          • Publications
          • Collaborations
        • Jasmonate Signaling
          • Projects
          • Staff
          • Publications
          • Collaborations
    • Bioorganic Chemistry

      • Secretariat & All Staff
      • Technical Resources
      • Publications
      • Research Groups
        • Bioactives
          • Projects
          • Staff
          • Publications
          • Collaborations
        • Natural Products & Metabolomics
          • Projects
          • Staff
          • Publications
          • Collaborations
        • Biotechnology
          • Projects
          • Staff
          • Publications
          • Collaborations
        • Biofunctional Synthesis
          • Projects
          • Staff
          • Publications
          • Collaborations
        • Computational Chemistry
          • Projects
          • Staff
          • Publications
          • Collaborations
        • Data & Resources
          • Projects
          • Staff
          • Publications
          • Collaborations
    • Biochemistry of Plant Interactions

      • Secretariat & All Staff
      • Technical Resources
      • Publications
      • Research Groups
        • Calcium-dependent Protein Kinases
          • Projects
          • Staff
          • Publications
          • Collaborations
        • Cellular Signaling
          • Projects
          • Staff
          • Publications
          • Collaborations
        • Metabolite-based Defense Mechanisms
          • Projects
          • Staff
          • Publications
          • Collaborations
        • Nuclear Processes in Plant Defense
          • Projects
          • Staff
          • Publications
          • Collaborations
    • Cell and Metabolic Biology

      • Secretariat & All Staff
      • Technical Resources
      • Publications
      • Research Groups
        • Glandular Trichomes and Isoprenoid Biosynthesis
          • Projects
          • Staff
          • Publications
          • Collaborations
        • Jasmonate Function & Mycorrhiza
          • Projects
          • Staff
          • Publications
          • Collaborations
        • Phenylpropanoid Metabolism
          • Projects
          • Staff
          • Publications
          • Collaborations
        • Synthetic Biology
          • Projects
          • Staff
          • Publications
          • Collaborations
    • Independent Junior Research Groups

      • Research Groups
        • Receptor Biochemistry
          • Projects
          • Staff
          • Publications
          • Collaborations
    • Program Center MetaCom

      • Secretariat & All staff
      • Publikationen
      • Our Equipment
      • Research Groups
        • Metabolomics Facility
          • Projects
          • Staff
          • Publications
          • Methods
        • MetaCom Analytical Laboratory
          • Projects
          • Staff
          • Publications
          • Methods
        • Computational Plant Biochemistry
          • Projects
          • Staff
          • Publications
          • Collaborations
        • MetaCom Junior Research Group
          • Projects
          • Staff
    • Publications

    • Good Scientific Practice

    • Research Funding

    • Networks and Collaborative Projects

      • Collaborative Projects as Coordinator
        • Completed Projects as Coordinator
      • Collaborative Projects as Partner
        • Completed Projects as Partner
      • Networks
    • Symposia and Colloquia

      • Lectures
        • IPB Seminars
      • Leibniz Plant Biochemistry Symposia
        • 2025 Symposium
    • Alumni Research Groups

      • Research Groups
        • Auxin Signaling
          • Projects
          • Publications
        • Bioorganic Chemistry
          • Projects
          • Publications
        • Designer Glycans
          • Projects
          • Publications
        • Jasmonate Mode of Action
          • Publications
        • Protein Recognition and Degradation
          • Projects
          • Publications
        • Regulatory RNAs (MLU-associated group)
          • Projects
          • Publications
        • Signal Integration
          • Projects
          • Publications
        • Ubiquitination in Immunity
          • Projects
          • Publications
        • Cellular Coordination
          • Projects
          • Publications
  • Infrastructure
    • Databases and Tools

      • XCMS
      • Rdisop
      • CAMERA
      • MetShot
      • MassBank
      • MetFrag
      • MetFamily
      • PaCeQuant
      • CytoskeletonAnalyzer
      • GoldenMutagenesis
      • cisHighlight
      • FlagScreen
      • RootDetection
    • Technical Resources

    • Imaging Unit

    • Greenhouses and Phytochambers

    • Library Services

      • OPAC
      • Electronic Journals Library
      • Service for Employees
  • Institute
    • Organizational Chart

    • Management and Boards

      • Board of Trustees
      • Scientific Advisory Board
      • IPB Management / Board of Directors
      • Scientific Council
      • Authorized Representatives of the IPB
      • Staff Council
      • Statutes
    • Administration and Infrastructure

      • Secretariat & All Staff
      • Working Groups
        • Human Resources
        • Finance & Accounting
        • Purchasing
        • IT & Technical Support
        • Experimental Nursery
        • Facility Management
        • Library
        • Digitalization
    • Energy Management

      • Objectives and Measures
      • Energy Management Team
    • Diversity, Family, Equality

      • Diversity
      • Equality
      • Family Support
      • Training and further Education
      • Integration and Health
      • General Equal Treatment Act
    • Public Tendering

    • Patents and Licensing

    • The IPB Welcoming Culture

    • Guest Houses

    • IPB Site Map

    • Brief IPB History

      • Bildergalerie zur Historie
      • Alte Filmsequenzen zum Institut
      • Historischer Massenspektrograph
    • Alumni Network

      • The IPB as a career launching pad
  • Career
    • Data protection information for applicants

    • PhD Program

      • PhD Student Representatives
      • DoCou - Doctoral Training Courses
      • PSSC
    • Postdocs

    • Berufsausbildung

  • Public Relations
    • News

      • 2024
      • 2023
      • 2022
      • Archiv Aktuelles
        • 2021
        • 2020
        • 2019
        • 2018
        • 2017
        • 2016
        • 2015
        • 2014
        • vor 2014
    • News Ticker Science

      • News Ticker 2024
      • News Ticker 2023
      • News Ticker 2022
      • News Ticker Archive
        • News Ticker 2021
        • News Ticker 2020
        • News Ticker 2019
    • Press Releases

      • 2024
      • 2023
      • 2022
      • Archive Press Releases
        • 2021
        • 2020
        • 2019
        • 2018
        • 2017
        • 2016
        • 2015
        • 2014
        • 2013
        • 2012
        • 2011
        • 2010
        • 2009
        • 2008
        • 2007
        • 2006
        • 2005
        • 2004
        • 2003
        • 2002
    • IPB Pressespiegel

    • LANGE NACHT, DIE WISSEN SCHAFFT: PROGRAMM

    • IPB Newsletter

    • Printed / Information Material

    • Scientific Reports / Research Highlights

    • Events

      • 2024 Long Night of Sciences
      • 2024 Leibniz Plant Biochemistry Symposium
      • Archiv Veranstaltungen
    • Cover Art

    • Citizen Science: Pilzberatung

      • Das Reich der Pilze
      • Pilzberatung
      • Forschung an Pilzen
  • Contact
    • Directions for Visitors

    • Staff Directory

    • Imprint

    • Data Protection

    • Accessibility

  1. IPB Halle
  2. Research
  3. Publications

    • Research Mission and Profile
    • Trenner 0
    • Molecular Signal Processing
      • Secretariat & All Staff
      • Technical Resources
      • Publications
      • Research Groups
        • Nutrient Sensing
        • Symbiosis Signaling
        • Jasmonate Signaling
    • Bioorganic Chemistry
      • Secretariat & All Staff
      • Technical Resources
      • Publications
      • Research Groups
        • Bioactives
        • Natural Products & Metabolomics
        • Biotechnology
        • Biofunctional Synthesis
        • Computational Chemistry
        • Data & Resources
    • Biochemistry of Plant Interactions
      • Secretariat & All Staff
      • Technical Resources
      • Publications
      • Research Groups
        • Calcium-dependent Protein Kinases
        • Cellular Signaling
        • Metabolite-based Defense Mechanisms
        • Nuclear Processes in Plant Defense
    • Cell and Metabolic Biology
      • Secretariat & All Staff
      • Technical Resources
      • Publications
      • Research Groups
        • Glandular Trichomes and Isoprenoid Biosynthesis
        • Jasmonate Function & Mycorrhiza
        • Phenylpropanoid Metabolism
        • Synthetic Biology
    • Independent Junior Research Groups
      • Research Groups
        • Receptor Biochemistry
    • Program Center MetaCom
      • Secretariat & All staff
      • Publikationen
      • Our Equipment
      • Research Groups
        • Metabolomics Facility
        • MetaCom Analytical Laboratory
        • Computational Plant Biochemistry
        • MetaCom Junior Research Group
    • Trenner 1
    • Publications
    • Good Scientific Practice
    • Research Funding
    • Trenner
    • Networks and Collaborative Projects
      • Collaborative Projects as Coordinator
        • Completed Projects as Coordinator
      • Collaborative Projects as Partner
        • Completed Projects as Partner
      • Networks
    • Symposia and Colloquia
      • Lectures
        • IPB Seminars
      • Leibniz Plant Biochemistry Symposia
        • 2025 Symposium
    • Trenner
    • Alumni Research Groups
      • Research Groups
        • Auxin Signaling
        • Bioorganic Chemistry
        • Designer Glycans
        • Jasmonate Mode of Action
        • Protein Recognition and Degradation
        • Regulatory RNAs (MLU-associated group)
        • Signal Integration
        • Ubiquitination in Immunity
        • Cellular Coordination

Advanced Search

  • Type of publication
    • Publication (9)
  • Year
    • 1999 (1)
      2010 (1)
      2014 (1)
      2015 (1)
      2016 (1)
      2019 (1)
      2021 (2)
      2022 (1)
  • Journal / Volume / Preprint Server Sorted by frequency and by alphabetical order
    • Phytochemistry (132)
      Plant J. (95)
      Plant Physiol. (94)
      0 (84)
      Plant Cell (55)
      Planta (54)
      bioRxiv (51)
      New Phytol. (50)
      Methods Mol. Biol. (41)
      Front. Plant Sci. (40)
      Int. J. Mol. Sci. (33)
      J. Biol. Chem. (33)
      J. Exp. Bot. (33)
      PLOS ONE (30)
      FEBS Lett. (29)
      Molecules (28)
      Vietnam J. Chem. (26)
      Proc. Natl. Acad. Sci. U.S.A. (25)
      Angew. Chem. Int. Ed. (22)
      J. Plant Physiol. (21)
      Angew. Chem. (18)
      Tetrahedron Lett. (18)
      Trends Plant Sci. (18)
      Plant Cell Physiol. (17)
      Sci. Rep. (17)
      Metabolomics (16)
      Mol. Plant Microbe Interact. (16)
      ChemBioChem (15)
      Plants (15)
      Anal. Bioanal. Chem. (14)
      BMC Plant Biol. (14)
      J. Agr. Food Chem. (14)
      J. Org. Chem. (14)
      Nat. Prod. Commun. (14)
      Plant Signal Behav. (14)
      Plant Cell Environ. (13)
      Plant Mol. Biol. (13)
      Adv. Exp. Med. Biol. (12)
      Anal. Chem. (12)
      Biochem. Syst. Ecol. (12)
      Chem. Commun. (12)
      Curr. Biol. (12)
      Curr. Opin. Plant Biol. (12)
      Food Chem. (12)
      J. Nat. Prod. (12)
      Metabolites (12)
      Org. Biomol. Chem. (12)
      Synthesis (12)
      Biol. Chem. (11)
      Eur. J. Org. Chem. (11)
      Nat. Commun. (11)
      Planta Med. (11)
      Tetrahedron (11)
      BMC Bioinformatics (10)
      J. Cheminform. (10)
      J. Mass Spectrom. (10)
      Nat. Prod. Res. (10)
      Eur. J. Med. Chem. (9)
      Mol. Plant (9)
      Synlett (9)
      Z. Naturforsch. C (9)
      Beilstein J. Org. Chem. (8)
      ChemCatChem (8)
      Fitoterapia (8)
      J. Proteome Res. (8)
      Mol. Plant Pathol. (8)
      Mycorrhiza (8)
      Phytochem. Anal. (8)
      Plant Biotechnol. J. (8)
      Proteomics (8)
      Theor. Appl. Genet. (8)
      Amino Acids (7)
      Chem.-Eur. J. (7)
      Org. Lett. (7)
      Pharmazie (7)
      Plant Growth Regul. (7)
      Plant Sci. (7)
      ACS Catal. (6)
      BIOspektrum (6)
      Bio Protoc. (6)
      Biochimie (6)
      Biomolecules (6)
      Chem. Biodivers. (6)
      Dalton Trans. (6)
      EMBO J. (6)
      Eur. J. Biochem. (6)
      J. Inorg. Biochem. (6)
      J. Med. Chem. (6)
      J. Pharm. Biomed. Anal. (6)
      Nat. Chem. Biol. (6)
      Nat. Plants (6)
      PLOS Pathog. (6)
      Physiol. Plant. (6)
      Plant Biol. (6)
      Plant Cell Tiss. Organ Cult. (6)
      RSC Adv. (6)
      Science (6)
      ACS Chem. Biol. (5)
      Anal. Biochem. (5)
      Biologie in unserer Zeit (5)
      J. Chromatogr. A (0)
  • Author Sorted by frequency and by alphabetical order
    • Frolov, A. (4)
      Wessjohann, L. A. (3)
      Farag, M. A. (2)
      Porzel, A. (2)
      Abel, S. (1)
      Adem, A. A. (1)
      Andrae-Marobela, K. (1)
      Arnold, N. (1)
      Arnouk, G. (1)
      Becker, K. (1)
      Belete, A. (1)
      Bonitenko, E. (1)
      Bürstenbinder, K. (1)
      Cardoso, F. (1)
      Erdmann, F. (1)
      Feilcke, R. (1)
      Fobofou, S. A. T. (1)
      Garrido, R. (1)
      Gebre-Mariam, T. (1)
      Gladilovich, V. (1)
      Greifenhagen, U. (1)
      Grubb, C. D. (1)
      Hoehenwarter, W. (1)
      Humpierre, A. R. (1)
      Imming, P. (1)
      Kramell, R. (1)
      Lee Erickson, J. (1)
      Lübken, T. (1)
      Mahrous, E. (1)
      Majovsky, P. (1)
      Miersch, O. (1)
      Méndez, Y. (1)
      Neubert, R. H. (1)
      Podolskaya, E. (1)
      Quintero, L. (1)
      Qwegwer, J. (1)
      Raphane, B. (1)
      Reiling, N. (1)
      Richard, K. (1)
      Rivera, D. G. (1)
      Saenz, M. (1)
      Santana, D. (1)
      Schattat, M. (1)
      Schipper, S. (1)
      Schneider, A. (1)
      Schneider, G. (1)
      Schubert, M. (1)
      Selyutin, A. (1)
      Shakour, Z. T. (1)
      Shirkin, A. (1)
      Singer, D. (1)
      Soboleva, A. (1)
      Sukhodolov, N. (1)
      Tessema, E. N. (1)
      Thieme, D. (1)
      Tietjen, I. (1)
      Valdés, Y. (1)
      Vasco, A. V. (1)
      Verez, V. (1)
      Wasternack, C. (1)
      Westermann, B. (1)
      Zanuy, A. (1)
      Ziegler, J. (1)
  • Year
  • Type of publication
Search narrowed by: Journal / Volume / Preprint Server Sorted by frequency and by alphabetical order: J. Pharm. Biomed. Anal. Journal / Volume / Preprint Server Sorted by frequency and by alphabetical order: J. Chromatogr. A Remove all filters
Displaying results 1 to 9 of 9.
  • Results as:
  • Print view
  • Endnote (RIS)
  • BibTeX
  • Table: CSV | HTML
Results per page:
  • 1

Publications

Humpierre, A. R.; Zanuy, A.; Saenz, M.; Vasco, A. V.; Méndez, Y.; Westermann, B.; Cardoso, F.; Quintero, L.; Santana, D.; Verez, V.; Valdés, Y.; Rivera, D. G.; Garrido, R.; Quantitative NMR for the structural analysis of novel bivalent glycoconjugates as vaccine candidates J. Pharm. Biomed. Anal. 214 114721 (2022) DOI: 10.1016/j.jpba.2022.114721
  • Abstract
  • Internet
  • BibText
  • RIS

Novel unimolecular bivalent glycoconjugates were assembled combining several functionalized capsular polysaccharides of Streptococcus pneumoniae and Neisseria meningitidis to a carrier protein by using an effective strategy based on the Ugi 4-component reaction. The development of multivalent glycoconjugates opens new opportunities in the field of vaccine design, but their high structural complexity involves new analytical challenges. Nuclear Magnetic Resonance has found wide applications in the characterization and impurity profiling of carbohydrate-based vaccines. Eight bivalent conjugates were studied by quantitative NMR analyzing the structural identity, the content of each capsular polysaccharide, the ratios between polysaccharides, the polysaccharide to protein ratios and undesirable contaminants. The qNMR technique involves experiments with several modified parameters for obtaining spectra with quantifiable signals. In addition, the achieved NMR results were combined with the results of colorimetric assay and Size Exclusion HPLC for assessing the protein content and free protein percentage, respectively. The application of quantitative NMR showed to be efficient to clear up the new structural complexities while allowing the quantitative assessment of the components.

Publications

Farag, M. A.; Shakour, Z. T.; Lübken, T.; Frolov, A.; Wessjohann, L. A.; Mahrous, E.; Unraveling the metabolome composition and its implication for Salvadora persica L. use as dental brush via a multiplex approach of NMR and LC–MS metabolomics J. Pharm. Biomed. Anal. 193 113727 (2021) DOI: 10.1016/j.jpba.2020.113727
  • Abstract
  • Internet
  • BibText
  • RIS

Salvadora persica L. (toothbrush tree, Miswak) is well recognized in most Middle Eastern and African countries for its potential role in dental care, albeit the underlying mechanism for its effectiveness is still not fully understood. A comparative MS and NMR metabolomics approach was employed to investigate the major primary and secondary metabolites composition of S. persica in context of its organ type viz., root or stem to rationalize for its use as a tooth brush. NMR metabolomics revealed its enrichment in nitrogenous compounds including proline-betaines i.e., 4-hydroxy-stachydrine and stachydrine reported for the first time in S. persica. LC/MS metabolomics identified flavonoids (8), benzylurea derivatives (5), butanediamides (3), phenolic acids (8) and 5 sulfur compounds, with 21 constituents reported for the first time in S. persica. Principal component analysis (PCA) and hierarchical cluster analysis (HCA) of either NMR or LC/MS dataset clearly separated stem from root specimens based on nitrogenous compounds abundance in roots and is justifying for its preference as toothbrush versus stems. The presence of betaines at high levels in S. persica (9−12 μg/mg dry weight) offers novel insights into its functioning as an osmoprotectant that maintains the hydration of oral mucosa. Additionally, the previously described anti-inflammatory activity of stachydrine along with the antimicrobial effects of sulfonated flavonoids, benzylisothiocynate and ellagic acid derivatives are likely contributors to S. persica oral hygiene health benefits. Among root samples, variation in sugars and organic acids levels were the main discriminatory criterion. This study provides the first standardization of S. persica extract using qNMR for further inclusion in nutraceuticals.

Publications

Adem, A. A.; Belete, A.; Soboleva, A.; Frolov, A.; Tessema, E. N.; Gebre-Mariam, T.; Neubert, R. H.; Structural characterization of plant glucosylceramides and the corresponding ceramides by UHPLC-LTQ-Orbitrap mass spectrometry J. Pharm. Biomed. Anal. 192 113677 (2021) DOI: 10.1016/j.jpba.2020.113677
  • Abstract
  • Internet
  • BibText
  • RIS

Ceramides (CERs) play a major role in skin barrier function and direct replacement of depleted skin CERs,due to skin disorder or aging, has beneficial effects in improving skin barrier function and skin hydration.Though, plants are reliable source of CERs, absence of economical and effective method of hydrolysis toconvert the dominant plant sphingolipid, glucosylceramides (GlcCERs), into CERs remains a challenge.This study aims at exploring alternative GlcCERs sources and chemical method of hydrolysis into CERsfor dermal application. GlcCERs isolated from lupin bean (Lupinus albus), mung bean (Vigna radiate) andnaked barley (Hordium vulgare) were identified using ultra high performance liquid chromatographyhyphenated with atmospheric pressure chemical ionization - high resolution tandem mass spectrometer(UHPLC/APCI-HRMS/MS) and quantified with validated automated multiple development-high perfor-mance thin layer chromatography (AMD-HPTLC) method. Plant GlcCERs were hydrolyzed into CERs withmild acid hydrolysis (0.1 N HCl) after treating them with oxidizing agent, NaIO4,and reducing agent,NaBH4. GlcCERs with 4,8-sphingadienine, 8-sphingenine and 4-hydroxy-8-sphingenine sphingoid baseslinked with C14 to C26 -hydroxylated fatty acids (FAs) were identified. Single GlcCER (m/z 714.5520)was dominant in lupin and mung beans while five major GlcCERs species (m/z 714.5520, m/z 742.5829,m/z 770.6144, m/z 842.6719 and m/z 844.56875) were obtained from naked barley. The GlcCERs con-tents of the three plants were comparable. However, lupin bean contains predominantly (> 98 %) a singleGlcCER (m/z 714.5520). Considering the affordability, GlcCER content and yield, lupin bean would bethe preferred alternative commercial source of GlcCERs. CER species bearing 4,8-sphingadienine and 8-sphingenine sphingoid bases attached to C14 to 24 FAs were found after mild acid hydrolysis. CER specieswith m/z 552.4992 was the main component in the beans while CER with m/z 608.5613 was dominantin the naked barley. However, CERs with 4-hydroxy-8-sphingenine sphingoid base were not detected inUHPLC-HRMS/MS study suggesting that the method works for mainly GlcCERs carrying dihydroxy sph-ingoid bases. The method is economical and effective which potentiates the commercialization of plantCERs for dermal application.

Publications

Feilcke, R.; Arnouk, G.; Raphane, B.; Richard, K.; Tietjen, I.; Andrae-Marobela, K.; Erdmann, F.; Schipper, S.; Becker, K.; Arnold, N.; Frolov, A.; Reiling, N.; Imming, P.; Fobofou, S. A. T.; Biological activity and stability analyses of knipholone anthrone, a phenyl anthraquinone derivative isolated from Kniphofia foliosa Hochst. J. Pharm. Biomed. Anal. 174 277-285 (2019) DOI: 10.1016/j.jpba.2019.05.065
  • Abstract
  • BibText
  • RIS

Knipholone (1) and knipholone anthrone (2), isolated from the Ethiopian medicinal plant Kniphofia foliosa Hochst. are two phenyl anthraquinone derivatives, a compound class known for biological activity. In the present study, we describe the activity of both 1 and 2 in several biological assays including cytotoxicity against four human cell lines (Jurkat, HEK293, SH-SY5Y and HT-29), antiplasmodial activity against Plasmodium falciparum 3D7 strain, anthelmintic activity against the model organism Caenorhabditis elegans, antibacterial activity against Aliivibrio fischeri and Mycobacterium tuberculosis and anti-HIV-1 activity in peripheral blood mononuclear cells (PBMCs) infected with HIV-1c. In parallel, we investigated the stability of knipholone (2) in solution and in culture media. Compound 1 displays strong cytotoxicity against Jurkat, HEK293 and SH-SY5Y cells with growth inhibition ranging from approximately 62–95% when added to cells at 50 μM, whereas KA (2) exhibits weak to strong activity with 26, 48 and 70% inhibition of cell growth, respectively. Both 1 and 2 possess significant antiplasmodial activity against Plasmodium falciparum 3D7 strain with IC50 values of 1.9 and 0.7 μM, respectively. These results complement previously reported data on the cytotoxicity and antiplasmodial activity of 1 and 2. Furthermore, compound 2 showed HIV-1c replication inhibition (growth inhibition higher than 60% at tested concentrations 0.5, 5, 15 and 50 μg/ml and an EC50 value of 4.3 μM) associated with cytotoxicity against uninfected PBMCs. The stability study based on preincubation, HPLC and APCI-MS (atmospheric-pressure chemical ionization mass spectrometry) analysis indicates that compound 2 is unstable in culture media and readily oxidizes to form compound 1. Therefore, the biological activity attributed to 2 might be influenced by its degradation products in media including 1 and other possible dimers. Hence, bioactivity results previously reported from this compound should be taken with caution and checked if they differ from those of its degradation products. To the best of our knowledge, this is the first report on the anti-HIV activity and stability analysis of compound 2.

Publications

Gladilovich, V.; Greifenhagen, U.; Sukhodolov, N.; Selyutin, A.; Singer, D.; Thieme, D.; Majovsky, P.; Shirkin, A.; Hoehenwarter, W.; Bonitenko, E.; Podolskaya, E.; Frolov, A.; Immobilized metal affinity chromatography on collapsed Langmuir-Blodgett iron(III) stearate films and iron(III) oxide nanoparticles for bottom-up phosphoproteomics J. Chromatogr. A 1443 181-190 (2016) DOI: 10.1016/j.chroma.2016.03.044
  • Abstract
  • BibText
  • RIS

Phosphorylation is the enzymatic reaction of site-specific phosphate transfer from energy-rich donors to the side chains of serine, threonine, tyrosine, and histidine residues in proteins. In living cells, reversible phosphorylation underlies a universal mechanism of intracellular signal transduction. In this context, analysis of the phosphoproteome is a prerequisite to better understand the cellular regulatory networks. Conventionally, due to the low contents of signaling proteins, selective enrichment of proteolytic phosphopeptides by immobilized metal affinity chromatography (IMAC) is performed prior to their LC–MS or -MS/MS analysis. Unfortunately, this technique still suffers from low selectivity and compromised analyte recoveries. To overcome these limitations, we propose IMAC systems comprising stationary phases based on collapsed Langmuir-Blodgett films of iron(III) stearate (FF) or iron(III) oxide nanoparticles (FO) and mobile phases relying on ammonia, piperidine and heptadecafluorooctanesulfonic acid (PFOS). Experiments with model phosphopeptides and phosphoprotein tryptic digests showed superior binding capacity, selectivity and recovery for both systems in comparison to the existing commercial analogs. As evidenced by LC–MS/MS analysis of the HeLa phosphoproteome, these features of the phases resulted in increased phosphoproteome coverage in comparison to the analogous commercially available phases, indicating that our IMAC protocol is a promising chromatographic tool for in-depth phosphoproteomic research.

Publications

Farag, M. A.; Porzel, A.; Wessjohann, L. A.; Unraveling the active hypoglycemic agent trigonelline in Balanites aegyptiaca date fruit using metabolite fingerprinting by NMR J. Pharm. Biomed. Anal. 115 383-387 (2015) DOI: 10.1016/j.jpba.2015.08.003
  • Abstract
  • BibText
  • RIS

Trigonelline (3-carboxy-1-methyl pyridinium) was identified as a relevant bioactivity and taste imparting component in Balanites aegyptiaca fruit, using 1H NMR of crude extracts without any fractionation or isolation step. The structural integrity of trigonelline was established within the extract matrix via1H NMR, 1H–1H COSY, HMQC and HMBC and by comparison with authentic standard. A quantitative 1H NMR method (qHNMR) was used to determine trigonelline concentrations in the peel and pulp of B. aegyptiaca fruit of 8 and 13 mg g−1, respectively. Trigonelline so far has not been reported from B. aegyptiaca or its genus as it easily escapes LC–MS based detection. Its discovery provides novel insight into the balanite fruits antidiabetic properties as the compound is known for a pronounced hypoglycemic effect. In addition, it is likely to impart the perceptible bitter taste portion to balanites sweet bitter taste. UPLC–MS of the crude extract additionally revealed the fruit flavonoid pattern showing quercetin/isorhamnetin flavonol conjugates in addition to epicatechin, the latter being present at much lower levels.

Publications

Ziegler, J.; Qwegwer, J.; Schubert, M.; Lee Erickson, J.; Schattat, M.; Bürstenbinder, K.; Grubb, C. D.; Abel, S.; Simultaneous analysis of apolar phytohormones and 1-aminocyclopropan-1-carboxylic acid by high performance liquid chromatography/electrospray negative ion tandem mass spectrometry via 9-fluorenylmethoxycarbonyl chloride derivatization J. Chromatogr. A 1362 102-109 (2014) DOI: 10.1016/j.chroma.2014.08.029
  • Abstract
  • BibText
  • RIS

A strategy to detect and quantify the polar ethylene precursor 1-aminocyclopropan-1-carboxylic acid (ACC) along with the more apolar phytohormones abscisic acid (ABA), indole-3-acetic acid (IAA), jasmonic acid (JA), jasmonic acid-isoleucine conjugate (JA-Ile), 12-oxo-phytodienoic acid (OPDA), trans-zeatin, and trans-zeatin 9-riboside using a single extraction is presented. Solid phase resins commonly employed for extraction of phytohormones do not allow the recovery of ACC. We circumvent this problem by attaching an apolar group to ACC via derivatization with the amino group specific reagent 9-fluorenylmethoxycarbonyl chloride (Fmoc-Cl). Derivatization in the methanolic crude extract does not modify other phytohormones. The derivatized ACC could be purified and detected together with the more apolar phytohormones using common solid phase extraction resins and reverse phase HPLC/electrospray negative ion tandem mass spectrometry. The limit of detection was in the low nanomolar range for all phytohormones, a sensitivity sufficient to accurately determine the phytohormone levels from less than 50 mg (fresh weight) of Arabidopsis thaliana and Nicotiana benthamiana tissues. Comparison with previously published phytohormone levels and the reported changes in phytohormone levels after stress treatments confirmed the accuracy of the method.

Publications

Schneider, A.; Wessjohann, L. A.; Comparison of impurity profiles of Orlistat pharmaceutical products using HPLC tandem mass spectrometry J. Pharm. Biomed. Anal. 53 767-772 (2010) DOI: 10.1016/j.jpba.2010.05.010
  • Abstract
  • BibText
  • RIS

HPLC-UV and MS/MS studies of impurity profiles of original (Xenical®, F. Hoffmann-La Roche Ltd., Switzerland) and generic (Cobese™, Ranbaxy Laboratories Limited, India, and Orsoten, KRKA, Russia) products were carried out. The drug and related impurities were extracted by dissolving commercial samples in ethanol. The generic formulations contained higher levels of impurities than the original product. Impurity profiles (HPLC-MS/MS) of the generic samples are similar among themselves, whilst different in comparison to the impurity profile of the original product. The number of detected impurities for generics (14 impurities in Cobese™ and 13 impurities in Orsoten) is higher than for the original product (3 impurities in Xenical®). Based on these analyses the overall analytical quality follows the order Xenical® (best) > Orsoten > Cobese™.

Publications

Kramell, R.; Porzel, A.; Miersch, O.; Schneider, G.; Wasternack, C.; Chromatographic resolution of peptide-like conjugates of jasmonic acid and of cucurbic acid isomers J. Chromatogr. A 847 103-107 (1999) DOI: 10.1016/S0021-9673(99)00335-0
  • Abstract
  • BibText
  • RIS

The chiral separation of peptide-like conjugates of jasmonic acid and of cucurbic acid isomers was investigated by liquid chromatography on Chiralpak AS and Nucleodex β-PM. The retention sequences reflect distinct chromatographic properties with respect to the chirality of the jasmonic acid part or of the cucurbic acid isomers. The chromatographic behaviour of the amide conjugates on a reversed-phase C18 column provides evidence for the resolution of diastereomeric conjugates depending on the chirality of both constituents of the conjugate molecule. The chromatographic procedures are suitable for the analytical and preparative separation of such conjugates.

  • 1

Print

  • IPB Halle
  • News
  • Lectures
  • Publications
  • Public Tendering
  • IPB Remote & Mail
  • Imprint
  • Data Protection
  • Accessibility
  • Die Leibniz-Gemeinschaft
  • Wege zu einer pflanzenbasierten Wirtschaft
  • Martin-Luther Universität Halle
  • Erfolgsfaktor Familie
  • TOTAL E-QUALITY
  • Research
    • Research Mission and Profile

    • Molecular Signal Processing

    • Bioorganic Chemistry

    • Biochemistry of Plant Interactions

    • Cell and Metabolic Biology

    • Independent Junior Research Groups

    • Program Center MetaCom

    • Publications

    • Good Scientific Practice

    • Research Funding

    • Networks and Collaborative Projects

    • Symposia and Colloquia

    • Alumni Research Groups

  • Infrastructure
    • Databases and Tools

    • Technical Resources

    • Imaging Unit

    • Greenhouses and Phytochambers

    • Library Services

  • Institute
    • Organizational Chart

    • Management and Boards

    • Administration and Infrastructure

    • Energy Management

    • Diversity, Family, Equality

    • Public Tendering

    • Patents and Licensing

    • The IPB Welcoming Culture

    • Guest Houses

    • IPB Site Map

    • Brief IPB History

    • Alumni Network

  • Career
    • Data protection information for applicants

    • PhD Program

    • Postdocs

    • Berufsausbildung

  • Public Relations
    • News

    • News Ticker Science

    • Press Releases

    • IPB Pressespiegel

    • LANGE NACHT, DIE WISSEN SCHAFFT: PROGRAMM

    • IPB Newsletter

    • Printed / Information Material

    • Scientific Reports / Research Highlights

    • Events

    • Cover Art

    • Citizen Science: Pilzberatung

  • IPB Remote & Mail