- Results as:
- Print view
- Endnote (RIS)
- BibTeX
- Table: CSV | HTML
Publications
Publications
Publications
Publications
Publications
Publications
Publications
Publications
Publications
Publications
Research Mission and Profile
Molecular Signal Processing
Bioorganic Chemistry
Biochemistry of Plant Interactions
Cell and Metabolic Biology
Independent Junior Research Groups
Program Center MetaCom
Publications
Good Scientific Practice
Research Funding
Networks and Collaborative Projects
Symposia and Colloquia
Alumni Research Groups
Publications
Tubulysins are among the most recent antimitotic compounds to enter into antibody/peptide‐drug conjugate (ADC/PDC) development. Thus far, the design of the most promising tubulysin payloads relied on simplifying their structures, e.g., by using small tertiary amide N‐substituents (Me, Et, Pr) on tubuvaline residue. Cumbersome solution‐phase approaches are typically used for both syntheses and functionalization with cleavable linkers. p‐Aminobenzyl quaternary ammonium (PABQ) linkers were a remarkable advancement for targeted delivery, but the procedures to incorporate them into tubulysins are only of moderate efficiency. Here we describe a novel all‐on‐resin strategy permitting a loss‐free resin linkage and an improved access to super potent tubulysin analogs showing close resemblance to the natural compounds. For the first time, a protocol enables the integration of on‐resin tubulysin derivatization with, e.g., a maleimido‐Val‐Cit‐PABQ linker, which is a notable progress for the payload‐PABQ‐linker technology. The strategy also allows tubulysin diversification of the internal amide N‐substituent, thus enabling to screen a tubulysin library for the discovery of new potent analogs. This work provides ADC/PDC developers with new tools for both rapid access to new derivatives and easier linker‐attachment and functionalization.
Publications
Aetokthonotoxin has recently been identified as the cyanobacterial neurotoxin causing Vacuolar Myelinopathy, a fatal neurologic disease, spreading through a trophic cascade and affecting birds of prey such as the bald eagle in the USA. Here, we describe the total synthesis of this specialized metabolite. The complex, highly brominated 1,2’-biindole could be synthesized via a Somei-type Michael reaction as key step. The optimised sequence yielded the natural product in five steps with an overall yield of 29 %.
Publications
The rapid annotation and identification by mass spectrometry techniques of flavonoids remains a challenge, due to their structural diversity and the limited availability of reference standards. This study applies a workflow to characterize two isoflavonoids, the orobol-C-glycosides analogs, using high-energy collisional dissociation (HCD)- and collision-induced dissociation (CID)-type fragmentation patterns, and also to evaluate the antioxidant effects of these compounds by ferric reducing antioxidant power (FRAP), 2,2′-azino-bis(3-ethylbenzothiazolin acid) 6-sulfonic acid (ABTS), and 2,2-diphenyl-1-picrylhydrazyl (DPPH) methods. By the CID-type fragmentation, in positive mode and at all high-resolution mass spectrometry (HRMS) multiple stage, there were shown differences in the annotation of the compounds, mainly concerning some ratios of relative abundance. At CID-MS2 20 eV, the compounds could be efficiently characterized, because they present distinct base peaks [M + H]+ and [M + H–H2O]+ for the orobol-8-C- and orobol-6-C-glycoside, respectively. Similarly, by the HCD-type fragmentation, in HRMS2 stage, differences between orobol analogs in both mode of ionization were observed. However, the HR HCD-MS2 at 80 eV, in positive mode, generated more ions and each isomer presented different base peaks ions, [0,2X]+ for the orobol-8-C-glycoside and [0,3X]+ for the orobol-6-C-glycoside. By the DPPH, the 8-C-derivative showed a very close value compared with the standard rutin and, in the ABTS method, a higher radical-scavenging activity. In both methods, the EC50 of orobol-8-C-glycoside was almost twice better compared with orobol-6-C-glycoside. In FRAP, both C-glycosides showed a good capacity as Fe+3 reducing agents. We could realize that combined MS techniques, highlighting the positive mode of ionization, can be used to evaluate the isoflavones analogs being useful to differentiate between the isomeric flavones; therefore, these data are important to mass spectrometry dereplication studies become more efficient.
Publications
Long‐chain ferulic acid esters, such as eicosyl ferulate (1), show a complex and analytically valuable fragmentation behavior under negative‐ion electrospay collision‐induced dissociation ((‐)‐ESI‐CID) mass spectrometry, as studied by use of a high‐resolution (Orbitrap) mass spectrometer. In a strong contrast to the very simple fragmentation of the [M + H]+ ion, which is discussed briefly, the deprotonated molecule, [M ‐ H]‐, exhibits a rich secondary fragmentation chemistry. It first loses a methyl radical (MS2) and the ortho‐quinoid [M ‐ H ‐ Me]‐• radical anion thus formed then dissociates by loss of an extended series of neutral radicals, CnH2n+1• (n = 0‐16) from the long alkyl chain, in competition with the expulsion of CO and CO2 (MS3). The further fragmentation (MS4) of the [M ‐ H ‐ Me ‐ C3H7]‐ ion, discussed as an example, and the highly specific losses of alkyl radicals from the [M ‐ H ‐ Me ‐ CO]‐• and [M ‐ H ‐ Me ‐ CO2]‐• ions provide some mechanistic and structural insights.
Publications
The multicomponent backbone N‐modification of peptides on solid‐phase is presented as a powerful and general method to enable peptide stapling at the backbone instead of the side chains. This work shows that a variety of functionalized N‐substituents suitable for backbone stapling can be readily introduced by means of on‐resin Ugi multicomponent reactions conducted during solid‐phase peptide synthesis. Diverse macrocyclization chemistries were implemented with such backbone N‐substituents, including the ring‐closing metathesis, lactamization, and thiol alkylation. The backbone N‐modification method was also applied to the synthesis of α‐helical peptides by linking N‐substituents to the peptide N‐terminus, thus featuring hydrogen‐bond surrogate structures. Overall, the strategy proves useful for peptide backbone macrocyclization approaches that show promise in peptide drug discovery.
Publications
Identification and structural determination of small molecules by mass spectrometry is an important step in chemistry and biochemistry. However, the chemically realistic annotation of a fragment ion spectrum can be a difficult challenge. We developed ChemFrag, for the detection of fragmentation pathways and the annotation of fragment ions with chemically reasonable structures. ChemFrag combines a quantum chemical with a rule‐based approach. For different doping substances as test instances, ChemFrag correctly annotates fragment ions. In most cases, the predicted fragments are chemically more realistic than those from purely combinatorial approaches, or approaches based on machine learning. The annotation generated by ChemFrag often coincides with spectra that have been manually annotated by experts. This is a major advance in peak annotation and allows a more precise automatic interpretation of mass spectra.
Publications
Aiming at providing an efficient and versatile method for the diversity‐oriented decoration and ligation of fullerenes, we report the first C60 derivatization strategy based on isocyanide‐multicomponent reactions (I‐MCRs). The approach comprises the use of Passerini and Ugi reactions for assembling pseudo‐peptidic scaffolds (i.e., N‐alkylated and depsipeptides, peptoids) on carboxylic acid‐functionalized fullerenes. The method showed wide substrate scope for the oxo and isocyanide components, albeit the Ugi reaction proved efficient only for aromatic amines. The approach was successfully employed for the ligation of oligopeptides and polyethyleneglycol chains (PEG) to C60, as well as for the construction of bis‐antennary as well as PEG‐tethered dimeric fullerenes. The quantum yields for the formation of 1O2 was remarkable for the selected compounds analyzed.
Publications
Boron's unusual properties inspired major advances in chemistry. In nature, the existence and importance of boron has been fairly explored (e.g. bacterial signaling, plant development) but its role as biological catalyst was never reported. Here, we show that boric acid [B(OH)3] can restore chloroperoxidase activity of Curvularia inaequalis recombinant apo‐haloperoxidase's (HPO) in the presence of hydrogen peroxide and chloride ions. Molecular modeling and semi‐empirical PM7 calculations support a thermodynamically highly favored (bio)catalytic mechanism similarly to vanadium haloperoxidases (V‐HPO) in which [B(OH)3] is assumedly located in apo‐HPO's active site and a monoperoxyborate [B(OH)3(OOH)−] intermediate is formed and stabilized by interaction with specific active site amino acids leading ultimately to the formation of HOCl. Thus, B(OH)3−HPO provides the first evidence towards the future exploitation of boron′s role in biological systems.
Publications
Representative compounds with a 1,3‐dihydroxybenzene substructure belonging to different important polyphenol classes (stilbenes, flavones, isoflavones, flavonols, flavanones, flavanols, phloroglucinols, anthraquinones and bisanthraquinones) were investigated based on detailed high‐resolution tandem mass spectrometry measurements with an Orbitrap system under negative ion electrospray conditions. The mass spectral behaviour of these compound classes was compared among each other not only with respect to previously described losses of CO, CH2CO and C3O2 but also concerning the loss of CO2 and successive specific fragmentations. Furthermore, some unusual fragmentations such as the loss of a methyl radical during mass spectral decomposition are discussed. The obtained results demonstrate both similarities and differences in their mass spectral fragmentation under MSn conditions, allowing a characterization of the corresponding compound type.
Publications
Constraining small peptides into specific secondary structures has been a major challenge in peptide ligand design. So far, the major solution for decreasing the conformational flexibility in small peptides has been cyclization. An alternative is the use of topological templates, which are able to induce and/or stabilize peptide secondary structures by means of covalent attachment to the peptide. Herein a multicomponent strategy and structural analysis of a new type of peptidosteroid architecture having the steroid as N‐substituent of an internal amide bond is reported. The approach comprises the one‐pot conjugation of two peptide chains (or amino acid derivatives) to aminosteroids by means of the Ugi reaction to give a unique family of N‐steroidal peptides. The conjugation efficiency of a variety of peptide sequences and steroidal amines, as well as their consecutive head‐to‐tail cyclization to produce chimeric cyclopeptide–steroid conjugates, that is, macrocyclic lipopeptides, was assessed. Determination of the three‐dimensional structure of an acyclic N‐steroidal peptide in solution proved that the bulky, rigid steroidal template is capable of both increasing significantly the conformational rigidity, even in a peptide sequence as short as five amino acid residues, and inducing a β‐turn secondary structure even in the all‐s‐trans isomer. This report provides the first evidence of the steroid skeleton as β‐turn inducer in linear peptide sequences.