- Results as:
- Print view
- Endnote (RIS)
- BibTeX
- Table: CSV | HTML
Publications
Publications
Publications
Publications
Publications
Publications
Publications
Publications
Publications
Publications
Research Mission and Profile
Molecular Signal Processing
Bioorganic Chemistry
Biochemistry of Plant Interactions
Cell and Metabolic Biology
Independent Junior Research Groups
Program Center MetaCom
Publications
Good Scientific Practice
Research Funding
Networks and Collaborative Projects
Symposia and Colloquia
Alumni Research Groups
Publications
The development of potent adjuvants is an important step for improving the performance of subunit vaccines. CD1d agonists, such as the prototypical α‐galactosyl ceramide (α‐GalCer), are of special interest due to their ability to activate iNKT cells and trigger rapid dendritic cell maturation and B‐cell activation. Herein, we introduce a novel derivatization hotspot at the α‐GalCer skeleton, namely the N‐substituent at the amide bond. The multicomponent diversification of this previously unexplored glycolipid chemotype space permitted the introduction of a variety of extra functionalities that can either potentiate the adjuvant properties or serve as handles for further conjugation to antigens toward the development of self‐adjuvanting vaccines. This strategy led to the discovery of compounds eliciting enhanced antigen‐specific T cell stimulation and a higher antibody response when delivered by either the parenteral or the mucosal route, as compared to a known potent CD1d agonist. Notably, various functionalized α‐GalCer analogues showed a more potent adjuvant effect after intranasal immunization than a PEGylated α‐GalCer analogue previously optimized for this purpose. Ultimately, this work could open multiple avenues of opportunity for the use of mucosal vaccines against microbial infections.
Publications
Pathogenic Xanthomonas bacteria cause disease on more than 400 plant species. These Gram-negative bacteria utilize the type III secretion system to inject type III effector proteins (T3Es) directly into the plant cell cytosol where they can manipulate plant pathways to promote virulence. The host range of a given Xanthomonas species is limited, and T3E repertoires are specialized during interactions with specific plant species. Some effectors, however, are retained across most strains, such as Xanthomonas Outer Protein L (XopL). As an ‘ancestral’ effector, XopL contributes to the virulence of multiple xanthomonads, infecting diverse plant species. XopL homologs harbor a combination of a leucine-rich-repeat (LRR) domain and an XL-box which has E3 ligase activity. Despite similar domain structure there is evidence to suggest that XopL function has diverged, exemplified by the finding that XopLs expressed in plants often display bacterial species-dependent differences in their sub-cellular localization and plant cell death reactions. We found that XopL from X. euvesicatoria (XopLXe) directly associates with plant microtubules (MTs) and causes strong cell death in agroinfection assays in N. benthamiana. Localization of XopLXe homologs from three additional Xanthomonas species, of diverse infection strategy and plant host, revealed that the distantly related X. campestris pv. campestris harbors a XopL (XopLXcc) that fails to localize to MTs and to cause plant cell death. Comparative sequence analyses of MT-binding XopLs and XopLXcc identified a proline-rich-region (PRR)/α-helical region important for MT localization. Functional analyses of XopLXe truncations and amino acid exchanges within the PRR suggest that MT-localized XopL activity is required for plant cell death reactions. This study exemplifies how the study of a T3E within the context of a genus rather than a single species can shed light on how effector localization is linked to biochemical activity.
Publications
Fungal unspecific peroxygenases (UPOs) have gained substantial attention for their versatile oxyfunctionalization chemistry paired with impressive catalytic capabilities. A major drawback, however, remains their sensitivity towards their co‐substrate hydrogen peroxide, necessitating the use of smart in situ hydrogen peroxide generation methods to enable efficient catalysis setups. Herein, we introduce flavin‐containing protein photosensitizers as a new general tool for light‐controlled in situ hydrogen peroxide production. By genetically fusing flavin binding fluorescent proteins and UPOs, we have created two virtually self‐sufficient photo‐enzymes (PhotUPO). Subsequent testing of a versatile substrate panel with the two divergent PhotUPOs revealed two stereoselective conversions. The catalytic performance of the fusion protein was optimized through enzyme and substrate loading variation, enabling up to 24300 turnover numbers (TONs) for the sulfoxidation of methyl phenyl sulfide. The PhotUPO concept was upscaled to a 100 mg substrate preparative scale, enabling the extraction of enantiomerically pure alcohol products.Graphical Abstract Unspecific peroxygenases (UPOs) have recently gained attraction as versatile oxyfunctionalization catalysts. One shortcoming, however, is their susceptibility towards the co-substrate hydrogen peroxide. As a solution, the concept of light-dependent UPO biocatalysis with genetically encoded flavin-containing photosensitizer proteins for in situ hydrogen peroxide production is introduced.
Publications
Research data management (RDM) is needed to assist experimental advances and data collection in the chemical sciences. Many funders require RDM because experiments are often paid for by taxpayers and the resulting data should be deposited sustainably for posterity. However, paper notebooks are still common in laboratories and research data is often stored in proprietary and/or dead-end file formats without experimental context. Data must mature beyond a mere supplement to a research paper. Electronic lab note-books (ELN) and laboratory information managementsystems (LIMS) allow researchers to manage data better and they simplify research and publication. Thus, an agreement is needed on minimum information standards for data handling to support structured approaches to data reporting. As digitalization becomes part of curricular teaching, future generations of digital native chemists will embrace RDM and ELN as an organic part of their research.
Publications
In contrast to the myriad of methods available to produce α‐helices and antiparallel β‐sheets in synthetic peptides, just a few are known for the construction of stable, non‐cyclic parallel β‐sheets. Herein, we report an efficient on‐resin approach for the assembly of parallel β‐sheet peptides in which the N‐alkylated turn moiety enhances the stability and gives access to a variety of functionalizations without modifying the parallel strands. The key synthetic step of this strategy is the multicomponent construction of an N‐alkylated turn using the Ugi reaction on varied isocyano‐resins. This four‐component process assembles the orthogonally protected turn fragment and incorporates handles serving for labeling/conjugation purposes or for reducing peptide aggregation. NMR and circular dichroism analyses confirm the better‐structured and more stable parallel β‐sheets in the N‐alkylated peptides compared to the non‐functionalized variants.
Publications
The intracellular accommodation structures formed by plant cells to host arbuscular mycorrhiza fungi and biotrophic hyphal pathogens are cytologically similar. Therefore we investigated whether these interactions build on an overlapping genetic framework. In legumes, the malectin-like domain leucine-rich repeat receptor kinase SYMRK, the cation channel POLLUX and members of the nuclear pore NUP107-160 subcomplex are essential for symbiotic signal transduction and arbuscular mycorrhiza development. We identified members of these three groups in Arabidopsis thaliana and explored their impact on the interaction with the oomycete downy mildew pathogen Hyaloperonospora arabidopsidis (Hpa). We report that mutations in the corresponding genes reduced the reproductive success of Hpa as determined by sporangiophore and spore counts. We discovered that a developmental transition of haustorial shape occurred significantly earlier and at higher frequency in the mutants. Analysis of the multiplication of extracellular bacterial pathogens, Hpa-induced cell death or callose accumulation, as well as Hpa- or flg22-induced defence marker gene expression, did not reveal any traces of constitutive or exacerbated defence responses. These findings point towards an overlap between the plant genetic toolboxes involved in the interaction with biotrophic intracellular hyphal symbionts and pathogens in terms of the gene families involved.
Publications
For the first time, the Petasis (borono‐Mannich) reaction is employed for the multicomponent labeling and stapling of peptides. The report includes the solid‐phase derivatization of peptides at the N‐terminus, Lys, and Nϵ‐MeLys side‐chains by an on‐resin Petasis reaction with variation of the carbonyl and boronic acid components. Peptides were simultaneously functionalized with aryl/vinyl substituents bearing fluorescent/affinity tags and oxo components such as dihydroxyacetone, glyceraldehyde, glyoxylic acid, and aldoses, thus encompassing a powerful complexity‐generating approach without changing the charge of the peptides. The multicomponent stapling was conducted in solution by linking Nϵ‐MeLys or Orn side‐chains, positioned at i, i+7 and i, i+4, with aryl tethers, while hydroxy carbonyl moieties were introduced as exocyclic fragments. The good efficiency and diversity oriented character of these methods show prospects for peptide drug discovery and chemical biology.
Publications
The functionalization of C−H bonds with non‐precious metal catalysts is an important research area for the development of efficient and sustainable processes. Herein, we describe the development of iron porphyrin catalyzed reactions of diazoacetonitrile with N‐heterocycles yielding important precursors of tryptamines, along with experimental mechanistic studies and proof‐of‐concept studies of an enzymatic process with YfeX enzyme. By using readily available FeTPPCl, we achieved the highly efficient C−H functionalization of indole and indazole heterocycles. These transformations feature mild reaction conditions, excellent yields with broad functional group tolerance, can be conducted on gram scale, and thus provide a unique streamlined access to tryptamines.
Publications
An important development in the field of macrocyclization strategies towards molecular cages is described. The approach comprises the utilization of a double Ugi four‐component macrocyclization for the assembly of macromulticycles with up to four different tethers, that is, hybrid cages. The innovation of this method rests on setting up the macromulticycle connectivities not through the tethers but through the bridgeheads, which in this case involve N‐substituted amino acids. Both dilution and metal‐template‐driven macrocyclization conditions were implemented with success, enabling the one‐pot formation of cryptands and cages including steroidal, polyether, heterocyclic, peptidic, and aryl tethers. This method demonstrates substantial complexity‐generating character and is suitable for applications in molecular recognition and catalysis.
Publications
Mutation rates vary by orders of magnitude across biological systems, being higher for simpler genomes. The simplest known genomes correspond to viroids, subviral plant replicons constituted by circular non-coding RNAs of few hundred bases. Previous work has revealed an extremely high mutation rate for chrysanthemum chlorotic mottle viroid, a chloroplast-replicating viroid. However, whether this is a general feature of viroids remains unclear. Here, we have used high-fidelity ultra-deep sequencing to determine the mutation rate in a common host (eggplant) of two viroids, each representative of one family: the chloroplastic eggplant latent viroid (ELVd, Avsunviroidae) and the nuclear potato spindle tuber viroid (PSTVd, Pospiviroidae). This revealed higher mutation frequencies in ELVd than in PSTVd, as well as marked differences in the types of mutations produced. Rates of spontaneous mutation, quantified in vivo using the lethal mutation method, ranged from 1/1000 to 1/800 for ELVd and from 1/7000 to 1/3800 for PSTVd depending on sequencing run. These results suggest that extremely high mutability is a common feature of chloroplastic viroids, whereas the mutation rates of PSTVd and potentially other nuclear viroids appear significantly lower and closer to those of some RNA viruses.