- Results as:
- Print view
- Endnote (RIS)
- BibTeX
- Table: CSV | HTML
Publications
Publications
Publications
Publications
Publications
Publications
Publications
Publications
Publications
Publications
Research Mission and Profile
Molecular Signal Processing
Bioorganic Chemistry
Biochemistry of Plant Interactions
Cell and Metabolic Biology
Independent Junior Research Groups
Program Center MetaCom
Publications
Good Scientific Practice
Research Funding
Networks and Collaborative Projects
Symposia and Colloquia
Alumni Research Groups
Publications
The development of potent adjuvants is an important step for improving the performance of subunit vaccines. CD1d agonists, such as the prototypical α‐galactosyl ceramide (α‐GalCer), are of special interest due to their ability to activate iNKT cells and trigger rapid dendritic cell maturation and B‐cell activation. Herein, we introduce a novel derivatization hotspot at the α‐GalCer skeleton, namely the N‐substituent at the amide bond. The multicomponent diversification of this previously unexplored glycolipid chemotype space permitted the introduction of a variety of extra functionalities that can either potentiate the adjuvant properties or serve as handles for further conjugation to antigens toward the development of self‐adjuvanting vaccines. This strategy led to the discovery of compounds eliciting enhanced antigen‐specific T cell stimulation and a higher antibody response when delivered by either the parenteral or the mucosal route, as compared to a known potent CD1d agonist. Notably, various functionalized α‐GalCer analogues showed a more potent adjuvant effect after intranasal immunization than a PEGylated α‐GalCer analogue previously optimized for this purpose. Ultimately, this work could open multiple avenues of opportunity for the use of mucosal vaccines against microbial infections.
Publications
Fungal unspecific peroxygenases (UPOs) have gained substantial attention for their versatile oxyfunctionalization chemistry paired with impressive catalytic capabilities. A major drawback, however, remains their sensitivity towards their co‐substrate hydrogen peroxide, necessitating the use of smart in situ hydrogen peroxide generation methods to enable efficient catalysis setups. Herein, we introduce flavin‐containing protein photosensitizers as a new general tool for light‐controlled in situ hydrogen peroxide production. By genetically fusing flavin binding fluorescent proteins and UPOs, we have created two virtually self‐sufficient photo‐enzymes (PhotUPO). Subsequent testing of a versatile substrate panel with the two divergent PhotUPOs revealed two stereoselective conversions. The catalytic performance of the fusion protein was optimized through enzyme and substrate loading variation, enabling up to 24300 turnover numbers (TONs) for the sulfoxidation of methyl phenyl sulfide. The PhotUPO concept was upscaled to a 100 mg substrate preparative scale, enabling the extraction of enantiomerically pure alcohol products.Graphical Abstract Unspecific peroxygenases (UPOs) have recently gained attraction as versatile oxyfunctionalization catalysts. One shortcoming, however, is their susceptibility towards the co-substrate hydrogen peroxide. As a solution, the concept of light-dependent UPO biocatalysis with genetically encoded flavin-containing photosensitizer proteins for in situ hydrogen peroxide production is introduced.
Publications
Research data management (RDM) is needed to assist experimental advances and data collection in the chemical sciences. Many funders require RDM because experiments are often paid for by taxpayers and the resulting data should be deposited sustainably for posterity. However, paper notebooks are still common in laboratories and research data is often stored in proprietary and/or dead-end file formats without experimental context. Data must mature beyond a mere supplement to a research paper. Electronic lab note-books (ELN) and laboratory information managementsystems (LIMS) allow researchers to manage data better and they simplify research and publication. Thus, an agreement is needed on minimum information standards for data handling to support structured approaches to data reporting. As digitalization becomes part of curricular teaching, future generations of digital native chemists will embrace RDM and ELN as an organic part of their research.
Publications
In contrast to the myriad of methods available to produce α‐helices and antiparallel β‐sheets in synthetic peptides, just a few are known for the construction of stable, non‐cyclic parallel β‐sheets. Herein, we report an efficient on‐resin approach for the assembly of parallel β‐sheet peptides in which the N‐alkylated turn moiety enhances the stability and gives access to a variety of functionalizations without modifying the parallel strands. The key synthetic step of this strategy is the multicomponent construction of an N‐alkylated turn using the Ugi reaction on varied isocyano‐resins. This four‐component process assembles the orthogonally protected turn fragment and incorporates handles serving for labeling/conjugation purposes or for reducing peptide aggregation. NMR and circular dichroism analyses confirm the better‐structured and more stable parallel β‐sheets in the N‐alkylated peptides compared to the non‐functionalized variants.
Publications
Two new furoquinoline alkaloids, maculine B (1) and kokusaginine B (2) and one new dihydrooxazole alkaloid, veprisazole (3), along with four known compounds namely, N13-methyl-3-methoxyrutaecarpine (4), flindersiamine (5), skimmianine (6) and tilianin (7) were isolated from the methanol extract of the stem bark of Araliopsis soyauxii Engl. by various chromatographic methods. Their structures were determined using spectrometry and spectroscopic techniques including NMR and MS. The cytotoxicity of the new compounds compared to that of doxorubicin, the reference anticancer compound, was determined on a panel of nine cancer cell lines including sensitive and drug resistant phenotypes. The three previously undescribed alkaloids displayed selective activities. Maculine B (1), the most active one among the newly described compounds, exhibited IC50 below 30 μM against CCRF-CEM leukemia and U87MG glioblastoma cells.
Publications
Twenty compounds were isolated from the hydroethanolic extract of the stems of Siolmatra brasiliensis, five flavonoids, two lignans, one glucosyl phytosterol, seven nor-cucurbitacins, one new phenolic derivative named siolmatrin (1) and four new dammarane-type saponins named siolmatrosides II-V (2–5), the structures of the compounds were assigned by means of 1D and 2D NMR experiments and HRESIMS of the natural compounds and some acetyl derivatives. The effects of the crude hydroethanolic extract (SbExt) and the ethyl acetate fraction (SbEtAc) of Siolmatra brasiliensis stems on the formation of advanced glycation end-products (AGEs) were also investigated. In the in vitro model system of protein glycation using bovine serum albumin (BSA) and glucose, addition of SbExt or SbEtAc inhibited the formation of fluorescent AGEs, in parallel to minor levels of fructosamine (SbEtAc) and markers of tyrosine and tryptophan oxidation (SbExt and SbEtAc). Protein crosslinking, which represents changes of late stages of protein glycation, was reduced in the presence of SbExt and SbEtAc. Siolmatra brasiliensis stems seem to be a promising source of compounds having ability to prevent glycoxidation changes, arising as an interesting option to be studied as a complementary therapy for complications of diabetes.
Publications
For the first time, the Petasis (borono‐Mannich) reaction is employed for the multicomponent labeling and stapling of peptides. The report includes the solid‐phase derivatization of peptides at the N‐terminus, Lys, and Nϵ‐MeLys side‐chains by an on‐resin Petasis reaction with variation of the carbonyl and boronic acid components. Peptides were simultaneously functionalized with aryl/vinyl substituents bearing fluorescent/affinity tags and oxo components such as dihydroxyacetone, glyceraldehyde, glyoxylic acid, and aldoses, thus encompassing a powerful complexity‐generating approach without changing the charge of the peptides. The multicomponent stapling was conducted in solution by linking Nϵ‐MeLys or Orn side‐chains, positioned at i, i+7 and i, i+4, with aryl tethers, while hydroxy carbonyl moieties were introduced as exocyclic fragments. The good efficiency and diversity oriented character of these methods show prospects for peptide drug discovery and chemical biology.
Publications
The functionalization of C−H bonds with non‐precious metal catalysts is an important research area for the development of efficient and sustainable processes. Herein, we describe the development of iron porphyrin catalyzed reactions of diazoacetonitrile with N‐heterocycles yielding important precursors of tryptamines, along with experimental mechanistic studies and proof‐of‐concept studies of an enzymatic process with YfeX enzyme. By using readily available FeTPPCl, we achieved the highly efficient C−H functionalization of indole and indazole heterocycles. These transformations feature mild reaction conditions, excellent yields with broad functional group tolerance, can be conducted on gram scale, and thus provide a unique streamlined access to tryptamines.
Publications
In the search for bioactive natural products from the African flora, three previously undescribed compounds including one stilbene-coumarin derivative (1), one coumarin-carbinol (2) and one fatty glycoside (3) were isolated from the stem bark and leaves of Monotes kerstingii, together with sixteen known compounds (4–19). The structures of the isolated compounds were elucidated based on their NMR and MS spectroscopic data and by comparison of these data with those previously reported in the literature. Compounds 1–19 were screened for anthelmintic and antimicrobial activity. None of the compounds exhibited significant anthelmintic activity. However, compounds 4, 5, 8 and 14 displayed interesting antibacterial activity against B. subtilis at a concentration of 100 μM with respective inhibition percentages of 99, 79, 71 and 100%, respectively, compared to erythromycin used as positive control. In addition, at the same concentration, compound 6 showed remarkable antifungal activity against Septoria tritici with 93.6% growth inhibition and was found to be more active than the positive controls epoconazole and terbinafine displaying 76.6 and 84.3%, respectively.
Publications
An important development in the field of macrocyclization strategies towards molecular cages is described. The approach comprises the utilization of a double Ugi four‐component macrocyclization for the assembly of macromulticycles with up to four different tethers, that is, hybrid cages. The innovation of this method rests on setting up the macromulticycle connectivities not through the tethers but through the bridgeheads, which in this case involve N‐substituted amino acids. Both dilution and metal‐template‐driven macrocyclization conditions were implemented with success, enabling the one‐pot formation of cryptands and cages including steroidal, polyether, heterocyclic, peptidic, and aryl tethers. This method demonstrates substantial complexity‐generating character and is suitable for applications in molecular recognition and catalysis.