- Results as:
- Print view
- Endnote (RIS)
- BibTeX
- Table: CSV | HTML
Publications
Research Mission and Profile
Molecular Signal Processing
Bioorganic Chemistry
Biochemistry of Plant Interactions
Cell and Metabolic Biology
Independent Junior Research Groups
Program Center MetaCom
Publications
Good Scientific Practice
Research Funding
Networks and Collaborative Projects
Symposia and Colloquia
Alumni Research Groups
Publications
Ethylene (ET) controls many facets of plant growth and development under abiotic and biotic stresses. MtEIN2, as a critical element of the ET signaling pathway, is essential in biotic interactions. However, the role of MtEIN2 in responding to abiotic stress, such as combined nutrient deficiency, is less known. To assess the role of ethylene signaling in nutrient uptake, we manipulated nitrate (NO3−) and phosphate (Pi) availability for wild-type (WT) and the ethylene-insensitive (MtEIN2-defective) mutant, sickle, in Medicago truncatula. We measured leaf biomass and photosynthetic pigments in WT and sickle to identify conditions leading to different responses in both genotypes. Under combined NO3− and Pi deficiency, sickle plants had higher chlorophyll and carotenoid contents than WT plants. Under these conditions, nitrate content and gene expression levels of nitrate transporters were higher in the sickle mutant than in the WT. This led to the conclusion that MtEIN2 is associated with nitrate uptake and the content of photosynthetic pigments under combined Pi and NO3−deficiency in M. truncatula. We conclude that ethylene perception plays a critical role in regulating the nutrient status of plants.