- Results as:
- Print view
- Endnote (RIS)
- BibTeX
- Table: CSV | HTML
Publications
Publications
Research Mission and Profile
Molecular Signal Processing
Bioorganic Chemistry
Biochemistry of Plant Interactions
Cell and Metabolic Biology
Independent Junior Research Groups
Program Center MetaCom
Publications
Good Scientific Practice
Research Funding
Networks and Collaborative Projects
Symposia and Colloquia
Alumni Research Groups
Publications
Macrocyclization of peptides is typically used to fix specific bioactive conformations and improve their pharmacological properties. Recently, macrobicyclic peptides have received special attention owing to their capacity to mimic protein structures or be key components of peptide-drug conjugates. Here, we describe the development of novel synthetic strategies for two distinctive types of peptide macrobicycles. A multicomponent macrocyclo-dimerization approach is introduced for the production of interconnected β-turns, allowing two macrocyclic rings to be formed and dimerized in one pot. Also, an on-resin double stapling strategy is described for the assembly of lactam-bridged macrobicycles with stable tertiary folds.
Publications
In this study, the characteristic growth of Cladobotryum virescens on nine culture media was analyzed. The growing behavior of this fungus was dependent on the culture medium. In vitro analysis showed that oat agar was better than other media tested with the highest conidia production. The antifungal activity against Fusarium chlamydosporum and Alternaria brassicicola was evaluated by the Dual Culture method. C. virescens displayed high activity against both pathogens acting through antibiosis and mycoparasitism. This effect was increased by a higher competitiveness of the strain for the substrate. Furthermore, the crude ethyl acetate extract of the culture broth was tested in vitro against Botrytis cinerea and Septoria tritici, as well as the hemibiotrophic oomycete Phytophthora infestans using a microtiter plate assay at different concentrations. The extract showed excellent inhibition even below 5 ppm. According to these results, we concluded that C. virescens can be considered as a potential biological control agent in agriculture. To the best of our knowledge, this is the first study to investigate C. virescens as a biocontrol agent for different diseases caused by five relevant pathogens that affect cereals and vegetables.