- Results as:
- Print view
- Endnote (RIS)
- BibTeX
- Table: CSV | HTML
Publications
Publications
Research Mission and Profile
Molecular Signal Processing
Bioorganic Chemistry
Biochemistry of Plant Interactions
Cell and Metabolic Biology
Independent Junior Research Groups
Program Center MetaCom
Publications
Good Scientific Practice
Research Funding
Networks and Collaborative Projects
Symposia and Colloquia
Alumni Research Groups
Publications
Three previously undescribed azepino-indole alkaloids, named purpurascenines A−C (1−3), together with the new-to-nature 7-hydroxytryptophan (4) as well as two known compounds, adenosine (5) and riboflavin (6), were isolated from fruiting bodies of Cortinarius purpurascens Fr. (Cortinariaceae). The structures of 1−3 were elucidated based on spectroscopic analyses and ECD calculations. Furthermore, the biosynthesis of purpurascenine A (1) was investigated by in vivo experiments using 13C-labeled sodium pyruvate, alanine, and sodium acetate incubated with fruiting bodies of C. purpurascens. The incorporation of 13C into 1 was analyzed using 1D NMR and HRESIMS methods. With [3-13C]-pyruvate, a dramatic enrichment of 13C was observed, and hence a biosynthetic route via a direct Pictet−Spengler reaction between α-keto acids and 7-hydroxytryptophan (4) is suggested for the biosynthesis of purpurascenines A−C (1−3). Compound 1 exhibits no antiproliferative or cytotoxic effects against human prostate (PC-3), colorectal (HCT-116), and breast (MCF-7) cancer cells. An in silico docking study confirmed the hypothesis that purpurascenine A (1) could bind to the 5-HT2A serotonin receptor’s active site. A new functional 5-HT2A receptor activation assay showed no functional agonistic but some antagonistic effects of 1 against the 5-HT-dependent 5-HT2A activation and likely antagonistic effects on putative constitutive activity of the 5-HT2A receptor.
Publications
In this study, the characteristic growth of Cladobotryum virescens on nine culture media was analyzed. The growing behavior of this fungus was dependent on the culture medium. In vitro analysis showed that oat agar was better than other media tested with the highest conidia production. The antifungal activity against Fusarium chlamydosporum and Alternaria brassicicola was evaluated by the Dual Culture method. C. virescens displayed high activity against both pathogens acting through antibiosis and mycoparasitism. This effect was increased by a higher competitiveness of the strain for the substrate. Furthermore, the crude ethyl acetate extract of the culture broth was tested in vitro against Botrytis cinerea and Septoria tritici, as well as the hemibiotrophic oomycete Phytophthora infestans using a microtiter plate assay at different concentrations. The extract showed excellent inhibition even below 5 ppm. According to these results, we concluded that C. virescens can be considered as a potential biological control agent in agriculture. To the best of our knowledge, this is the first study to investigate C. virescens as a biocontrol agent for different diseases caused by five relevant pathogens that affect cereals and vegetables.