- Results as:
- Print view
- Endnote (RIS)
- BibTeX
- Table: CSV | HTML
Publications
Publications
Research Mission and Profile
Molecular Signal Processing
Bioorganic Chemistry
Biochemistry of Plant Interactions
Cell and Metabolic Biology
Independent Junior Research Groups
Program Center MetaCom
Publications
Good Scientific Practice
Research Funding
Networks and Collaborative Projects
Symposia and Colloquia
Alumni Research Groups
Publications
Introduction: Oleanane-type pentacyclic triterpenes named glycyrrhetinic acids (GAs) featuring a C-30 carboxylic acid group, are extracted from the licorice (Glycyrrhiza uralensis). Numerous biological properties of GA have been reported and have attracted researchers from all over the world in recent years due to the peculiar GA scaffold-based semisynthetic cytotoxic effects.Areas covered: This review represents the applications of semisynthetic derivatives of GA for the development of future cancer treatments. Included in the review are important structural features of the semisynthetic GAs crucial for cytotoxic effects.Expert opinion: Numerous semisynthetic GA derivatives illustrated excellent cytotoxic effects toward various cancer cells. Notably the C-3(OH) at ring A along with C30-CO2H at ring E as vital structural features, make GA very appealing as a lead scaffold for medicinal chemistry, since these two groups permit the creation of further chemical diversity geared toward improved cytotoxic effects. Furthermore, numerous GA derivatives have been synthesized and indicate that compounds featuring cyanoenone moieties in ring A, or compounds having the amino group or nitrogen comprising heterocycles and hybrids thereof, illustrate more potent cytotoxicity. Furthermore, GA has a great capability to be conjugated with other anticancer molecules to synergistically enhance their combined cytotoxicity.
Publications
Introduction: Cancer has been identified to be the second major cause of death internationally as exemplified by ca. 9.6 million deaths in 2018 along with ca. 18 million new patients in 2018 that have been recorded. Natural boswellic acids (BAs) and their source, frankincense, have been reported to possess in vitro and in vivo anticancer effects toward various cancer cells.Areas covered: This comprehensive review focuses on the importance of boswellic acids (BAs) for the establishment of future treatments of cancer. Moreover, potent semisynthetic derivatives of BAs have been described along with their mode of action. In addition, important structural features of the semisynthetic BAs required for cytotoxic effects are also discussed.Expert opinion: Numerous semisynthetic BAs illustrate excellent cytotoxic effects. Of note, compounds bearing cyanoenone moieties in ring A, endoperoxides and hybrids display increased and more potent cytotoxic effects compared with other semisynthetic BAs. Moreover, BAs have the potential to conjugate or couple with other anticancer compounds to synergistically increase their combined anticancer effects. In addition, to get derived BAs to become lead anticancer compounds, future research should focus on the preparation of ring A cyanoenones, endoperoxides, and C-24 amide analogs.