- Results as:
- Print view
- Endnote (RIS)
- BibTeX
- Table: CSV | HTML
Publications
Research Mission and Profile
Molecular Signal Processing
Bioorganic Chemistry
Biochemistry of Plant Interactions
Cell and Metabolic Biology
Independent Junior Research Groups
Program Center MetaCom
Publications
Good Scientific Practice
Research Funding
Networks and Collaborative Projects
Symposia and Colloquia
Alumni Research Groups
Publications
The N-degron pathway, formerly the N-end rule pathway, regulates functions of regulatory proteins. It impacts protein half-life and therefore directs the actual presence of target proteins in the cell. The current concept holds that the N-degron pathway depends on the identity of the amino (N)-terminal amino acid and many other factors, such as the follow-up sequence at the N terminus, conformation, flexibility, and protein localization. It is evolutionarily conserved throughout the kingdoms. One possible entry point for substrates of the N-degron pathway is oxidation of N-terminal Cys residues. Oxidation of N-terminal Cys is decisive for further enzymatic modification of various neo–N termini by arginylation that generates potentially neofunctionalized or instable proteoforms. Here, I focus on the posttranslational modifications that are encompassed by protein degradation via the Cys/Arg branch of the N-degron pathway—part of the PROTEOLYSIS 6 (PRT6)/N-degron pathway—as well as the underlying physiological principles of this branch and its biological significance in stress response.