- Results as:
- Print view
- Endnote (RIS)
- BibTeX
- Table: CSV | HTML
Publications
Publications
Publications
Publications
Publications
Publications
Publications
Research Mission and Profile
Molecular Signal Processing
Bioorganic Chemistry
Biochemistry of Plant Interactions
Cell and Metabolic Biology
Independent Junior Research Groups
Program Center MetaCom
Publications
Good Scientific Practice
Research Funding
Networks and Collaborative Projects
Symposia and Colloquia
Alumni Research Groups
Publications
Triphenyltin(IV) compounds with naphthoquinone derivatives containing N-acetylcysteine, N-acetyl-S-(1,2-dion-4-naphthyl)cysteine (1,2-NQC), 1, and N-acetyl-S-(1,4-dion-2-naphthyl)cysteine (1,4-NQC), 2, were synthesized and characterized by elemental microanalysis, IR, multinuclear (1H, 13C, 119Sn) NMR spectroscopy as well as HR-ESI mass spectrometry. With the aim of in vitro anticancer activity determination of ligand precursors and novel synthesized organotin(IV) compounds against human cervix adenocarcinoma (HeLa), human colon carcinoma (HT-29), and melanoma carcinoma cell line (B16F10), MTT colorimetric assay method was applied. The results indicate that synthesized compounds exhibited remarkable antiproliferative activity toward all tested cell lines with IC50 in the range of 0.17 to 0.87 μM. Complex 1 showed the greatest activity against HT-29 cells, with IC50 value of 0.21 ± 0.01 μM, 119 times better than cisplatin, while complex 2 demonstrated the highest activity toward HeLa cells, IC50 = 0.17 ± 0.01 μM, which is ~26 times better than cisplatin.
Publications
Tubugi-1 is a small cytotoxic peptide with picomolar cytotoxicity. To improve its cancer cell targeting, it was conjugated using a universal, modular disulfide derivative. This allowed conjugation to a neuropeptide-Y (NPY)-inspired peptide [K4(C-βA-),F7,L17,P34]-hNPY, acting as NPY Y1 receptor (hY1R)-targeting peptide, to form a tubugi-1–SS–NPY disulfide-linked conjugate. The cytotoxic impacts of the novel tubugi-1–NPY peptide–toxin conjugate, as well as of free tubugi-1, and tubugi-1 bearing the thiol spacer (liberated from tubugi-1–NPY conjugate), and native tubulysin A as reference were investigated by in vitro cell viability and proliferation screenings. The tumor cell lines HT-29, Colo320 (both colon cancer), PC-3 (prostate cancer), and in conjunction with RT-qPCR analyses of the hY1R expression, the cell lines SK-N-MC (Ewing`s sarcoma), MDA-MB-468, MDA-MB-231 (both breast cancer) and 184B5 (normal breast; chemically transformed) were investigated. As hoped, the toxicity of tubugi-1 was masked, with IC50 values decreased by ca. 1,000-fold compared to the free toxin. Due to intracellular linker cleavage, the cytotoxic potency of the liberated tubugi-1 that, however, still bears the thiol spacer (tubugi-1-SH) was restored and up to 10-fold higher compared to the entire peptide–toxin conjugate. The conjugate shows toxic selectivity to tumor cell lines overexpressing the hY1R receptor subtype like, e.g., the hard to treat triple-negative breast cancer MDA-MB-468 cells.
Publications
Isoxanthohumol (IXN), a prenylflavonoid from hops and beer, gained increasing attention as a potential chemopreventive agent. In the present study, IXN antimetastatic potential in vitro against the highly invasive melanoma cell line B16-F10 and in vivo in a murine metastatic model was investigated. Melanoma cell viability was diminished in a dose-dependent manner following the treatment with IXN. This decrease was a consequence of autophagy and caspase-dependent apoptosis. Additionally, the dividing potential of highly proliferative melanoma cells was dramatically affected by this isoflavanone, which was in correlation with an abrogated cell colony forming potential, indicating changes in their metastatic features. Concordantly, IXN promoted strong suppression of the processes that define metastasis– cell adhesion, invasion, and migration. Further investigation at the molecular level revealed that the abolished metastatic potential of a melanoma subclone was due to disrupted integrin signaling. Importantly, these results were reaffirmed in vivo where IXN inhibited the development of lung metastatic foci in tumor-challenged animals. The results of the present study may highlight the beneficial effects of IXN on melanoma as the most aggressive type of skin cancer and will hopefully shed a light on the possible use of this prenylflavonoid in the treatment of metastatic malignancies.
Publications
Herein, a new Ugi multicomponent reaction strategy is described to enhance activity and solubility of the chemotherapeutic drug chlorambucil through its conjugation to poly(amidoamine) (PAMAM-NH2) dendrimers with the simultaneous introduction of lipidic (i-Pr) and cationic (–NH2) or anionic (–COOH) groups. Standard viability assays were used to evaluate the anticancer potential of the water-soluble dendrimers against PC-3 prostate and HT-29 colon cancer cell lines, as well as non-cancerous mouse NIH3T3 fibroblasts. It could be demonstrated that the anticancer activity against PC-3 cells was considerably improved when both chlorambucil and –NH2 (cationic) groups were present on the dendrimer surface (1b). Additionally, this dendrimer showed activity only against the prostate cancer cells (PC-3), while it did not affect colon cancer cells and fibroblasts significantly. The cationic chlorambucil-dendrimer 1b blocks PC-3 cells in the G2/M phase and induces caspase independent apoptosis.
Publications
Synthetic tubugis are equally potent but more stable than their natural forms. Their anticancer potential was estimated on a solid melanoma in vitro and in vivo. Tubugi-1 induced the apoptosis in B16 cells accompanied with strong intracellular production of reactive species, subsequently imposing glutathione and thiol group depletion. Paradoxically, membrane lipids were excluded from the cascade of intracellular oxidation, according to malondialdehyde decrease. Although morphologically apoptosis was typical, externalization of phosphatidylserine (PS) as an early apoptotic event was not detected. Even their exposition is pivotal for apoptotic cell eradication, primary macrophages successfully eliminated PS-deficient tubugi-1 induced apoptotic cells. The tumor volume in animals exposed to the drug in therapeutic mode was reduced in comparison to control as well as to paclitaxel-treated animals. Importantly, macrophages isolated from tubugi-1 treated animals possessed conserved phagocytic activity and were functionally and phenotypically recognized as M1. The cytotoxic effect of tubugi-1 is accomplished through its ability to polarize the macrophages toward M1, probably by PS independent apoptotic cell engulfment. The unique potential of tubugi-1 to prime the innate immune response through the induction of a specific pattern of tumor cell apoptosis can be of extraordinary importance from fundamental and applicable aspects.
Publications
Background/Aim: Tubugi-1 is a more stable and accessible synthetic counterpart of natural tubulysins. This study aimed to evaluate its cytotoxic potential against anaplastic human melanoma cells. Materials and Methods: The viability of A-375 cells was determined by 3-(4,5-dimethythiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and crystal violet assay. The type of cell death and proliferative rate were investigated using flow cytometry and fluorescent microscopy, while the molecular background was evaluated by western blot. Results: Tubugi-1 reduced the viability of A-375 cells, inducing massive micronucleation, followed by augmented expression of inhibitor of nuclear factor-κB and caspase-2, typical of a mitotic catastrophe. Disturbed proliferation and G2M block with prominent caspase activity, weakened the expression of B-cell lymphoma 2 and B-cell lymphoma 2-associated X transient up-regulation, coexisted with intensive autophagy. Specific inhibition of autophagy by chloroquine resulted in conversion from mitotic catastrophe to rapid apoptosis. Conclusion: Multilevel anticancer action of tubugi-1 is extended by co-application of an autophagy inhibitor, giving a new dimension in further preclinical advancement of this potential agent.
Publications
Herein appropriateness of nonfunctionalized mesoporous silica nanoparticles SBA-15 and functionalized with (3-chloropropyl)triethoxysilane (→ SBA-15~Cl) and (3-aminopropyl)triethoxysilane (→ SBA-15~NH2) on delivery of physically adsorbed Ph3Sn(CH2)6OH (Sn6) is evaluated. Fluorescent nanomaterial, bearing isatoic moiety, loaded with Sn6 (→ SBA-15~NF|Sn6) was used for cellular uptake study. The fluorescent nanomaterial is efficiently acquired and distributed into the cytoplasm of the cells even after 2 h of cultivation. According to the attained data, all SBA-15 materials loaded with Sn6 diminished cellular viability in dose dependent manner while carriers alone (SBA-15, SBA-15~Cl, SBA-15~NH2) did not show cytotoxicity against B16 cells. According to the MC50 values structural modification of SBA-15 did not improve the efficacy of tested drug. While progressive apoptosis was detected upon the treatment with SBA-15|Sn6, exposure of cells to SBA-15~NH2|Sn6 revealed extinguished apoptosis in time, accompanied with lower caspase activity. This effect is probably due to triggered autophagic process under the treatment with the SBA-15~NH2|Sn6, thus opposed to apoptosis. Presented results suggested that functionalization of SBA-15 was not beneficial for the efficacy of loaded drug, thus, all of them are almost equally efficient considering loaded Sn6 content. Importantly, functionalization of SBA-15 does have an influence on the mode of action and differentiation inducing properties.