- Results as:
- Print view
- Endnote (RIS)
- BibTeX
- Table: CSV | HTML
Publications
Publications
Publications
Publications
Publications
Publications
Publications
Publications
Publications
Publications
Research Mission and Profile
Molecular Signal Processing
Bioorganic Chemistry
Biochemistry of Plant Interactions
Cell and Metabolic Biology
Independent Junior Research Groups
Program Center MetaCom
Publications
Good Scientific Practice
Research Funding
Networks and Collaborative Projects
Symposia and Colloquia
Alumni Research Groups
Publications
Stapled peptides derived from the Ugi macrocyclization comprise a special class of cyclopeptides with an N-substituted lactam bridge cross-linking two amino acid side chains. Herein we report a comprehensive analysis of the structural factors influencing the secondary structure of these cyclic peptides in solution. Novel insights into the s-cis/s-trans isomerism and the effect of N-functionalization on the conformation are revealed.
Publications
The enormous diversity of terpenes found in nature is generated by enzymes known as terpene synthases, or cyclases. Some are also known for their ability to convert a single substrate into multiple products. This review comprises monoterpene and sesquiterpene synthases that are multiproduct in nature along with the regulation factors that can alter the product specificity of multiproduct terpene synthases without genetic mutations. Variations in specific assay conditions with focus on shifts in product specificity based on change in metal cofactors, assay pH and substrate geometry are described. Alterations in these simple cellular conditions provide the organism with enhanced chemodiversity without investing into new enzymatic architecture. This versatility to modulate product diversity grants organisms, especially immobile ones like plants with access to an enhanced defensive repertoire by simply altering cofactors, pH level and substrate geometry.
Publications
A multicomponent macrocyclization strategy towards cyclic lipopeptides is described. The approach relies on the utilization of the Ugi and Passerini multicomponent reactions for the cyclization of peptides and oxo-peptides, and here it is employed for the construction of a small library of analogues of the natural products mycosubtilin and surfactin A. A key feature of this method is the simultaneous incorporation of either one or two exocyclic lipid tails along with the macrocyclic ring closure, which is only possible due to the multicomponent nature of the macrocyclization step. The evaluation of the anticancer activity of the lipopeptide library showed that the installation of a second lipid moiety in the surfactin scaffold leads to a more potent cytotoxicity in cancer cells. This is a new example of the multicomponent reaction potential in rapidly producing natural product analogues for biological screening.
Publications
For the first time, spin-labelled coumpounds have been obtained by isonitrile-based multi component reactions (IMCRs). The typical IMCR Ugi-protocols offer a simple experimental setup allowing structural variety by which labelled diketopiperazines (DKPs) and peptide–peptoid chimera have been synthesized. The reaction keeps the paramagnetic spin label intact and offers a simple and versatile route to a large variety of new and chemically diverse spin labels.
Publications
A series of 2-(acetamide-2-yl)-imidazolines (II) with 5 points of diversity were prepared by an Ugi-4CR–Staudinger–aza-Wittig-sequence starting from simple azidoalkylamines. The intramolecular aza-Wittig cyclization between the iminophosphane and the tertiary amide of the Ugi product (I) was effected by short microwave irradiation. Competitive cyclization to the secondary amide was not relevant, however, in some cases subsequent formation of the bicyclic ortho-amidines (III) was observed.
Publications
The multiproduct sesquiterpene synthase MtTPS5 from Medicago truncatula catalyzes the conversion of farnesyl diphosphate (FDP) into a complex mixture of 27 terpenoids. 3-Bromo substrate analogues of geranyl diphosphate (3-BrGDP) and farnesyl diphosphate (3-BrFDP) were evaluated as substrates of MTPS5 enzyme. Kinetic studies demonstrated that these compounds were highly potent competitive inhibitors of the MtTPS5 enzyme with fast binding and slow reversibility. Since there is a lack of knowledge about the crystal structure of multiproduct terpene synthases, these molecules might be ideal candidates for obtaining a co-crystal structure with multiproduct terpene synthases. Due to the structural and mechanistic similarity between various terpene synthases we expect these 3-bromo isoprenoids to be ideal probes for crystal structure studies.
Publications
Increasing the diversity of peptide cyclization methods is an effective way of accessing new types of macrocyclic chemotypes featuring a wide variety of ring sizes and topologies. Multicomponent reactions (MCRs) are processes capable of generating great levels of molecular diversity and complexity at low synthetic cost. In an attempt to further exploit MCRs in the field of cyclopeptides, we describe a bidirectional multicomponent approach for the synthesis of N-alkylated macrocyclic peptides of varied sequences and cross-linking positions. The process relies on the execution of two Ugi reactions between peptide diacids and diisocyanides. Varying the amino component enabled the installation of exocyclic elements of diversity, while skeletal diversity was created through different side chain and backbone cyclizations. This procedure shows prospects for the rapid scanning of the chemical space of macrocyclic peptides for applications in chemical biology and drug discovery.
Publications
A one-pot procedure for the phosphorylation of alcohols provides the corresponding phosphate monoesters in improved yields. The protocol features the use of tetrabutylammonium hydrogen phosphate and trichloroacetonitrile, followed by purification of the crude product by flash chromatography on silica gel. The final step, cation exchange chromatography, affords the organophosphates as ammonium salts that are usually required for biochemical applications. The mechanism appears to be phosphate rather than alcohol activation by trichloroacetonitrile.
Publications
Protein profiling probes are important tools for studying the composition of the proteome and as such have contributed greatly to the understanding of various complex biological processes in higher organisms. For this purpose the application of fluorescently labeled activity or affinity probes is highly desirable. Especially for in vivodetection of low abundant target proteins, otherwise difficult to analyse by standard blotting techniques, fluorescently labeled profiling probes are of high value. Here, a one-pot protocol for the synthesis of activated fluorescent labels (i.e.azide, alkynyl or NHS), based on the Ugi-4-component reaction (Ugi-4CR), is presented. As a result of the peptoidic structure formed, the fluorescent properties of the products are pH insensitive. Moreover, the applicability of these probes, as exemplified by the labeling of model protein BSA, will be discussed.
Publications
Ammonia and selenoaldehydes are both problematic components in Ugi reactions. Here we report the efficient direct multicomponent synthesis of sensitive selenocysteinepeptides without the use of convertible (protected) primary amines, including suitable deprotection protocols for selenols.