- Results as:
- Print view
- Endnote (RIS)
- BibTeX
- Table: CSV | HTML
Publications
Publications
Publications
Publications
Publications
Publications
Publications
Publications
Publications
Publications
Research Mission and Profile
Molecular Signal Processing
Bioorganic Chemistry
Biochemistry of Plant Interactions
Cell and Metabolic Biology
Independent Junior Research Groups
Program Center MetaCom
Publications
Good Scientific Practice
Research Funding
Networks and Collaborative Projects
Symposia and Colloquia
Alumni Research Groups
Publications
Changes in cellular calcium levels are one of the earliest signalling events in plants exposed to pathogens or other exogenous factors. In a genetic screen, we identified an Arabidopsis thaliana ‘changed calcium elevation 1 ’ (cce1 ) mutant with attenuated calcium response to the bacterial flagellin flg22 peptide and several other elicitors. Whole genome re‐sequencing revealed a mutation in ALG12 (Asparagine‐Linked Glycosylation 12 ) that encodes the mannosyltransferase responsible for adding the eighth mannose residue in an α‐1,6 linkage to the dolichol‐PP‐oligosaccharide N ‐glycosylation glycan tree precursors. While properly targeted to the plasma membrane, misglycosylation of several receptors in the cce1 background suggests that N ‐glycosylation is required for proper functioning of client proteins.
Publications
A series of 2-(acetamide-2-yl)-imidazolines (II) with 5 points of diversity were prepared by an Ugi-4CR–Staudinger–aza-Wittig-sequence starting from simple azidoalkylamines. The intramolecular aza-Wittig cyclization between the iminophosphane and the tertiary amide of the Ugi product (I) was effected by short microwave irradiation. Competitive cyclization to the secondary amide was not relevant, however, in some cases subsequent formation of the bicyclic ortho-amidines (III) was observed.
Publications
A one-pot procedure for the phosphorylation of alcohols provides the corresponding phosphate monoesters in improved yields. The protocol features the use of tetrabutylammonium hydrogen phosphate and trichloroacetonitrile, followed by purification of the crude product by flash chromatography on silica gel. The final step, cation exchange chromatography, affords the organophosphates as ammonium salts that are usually required for biochemical applications. The mechanism appears to be phosphate rather than alcohol activation by trichloroacetonitrile.
Publications
Caffeoyl‐coenzyme A O‐methyltransferase (CCoAOMT)‐like proteins from plants display a conserved position specificity towards the meta‐position of aromatic vicinal dihydroxy groups, consistent with the methylation pattern observed in vivo. A CCoAOMT‐like enzyme identified from Arabidopsis thaliana encoded by the gene At4g26220 shows a strong preference for methylating the para position of flavanones and dihydroflavonols, whereas flavones and flavonols are methylated in the meta‐position. Sequence alignments and homology modelling identified several unique amino acids compared to motifs of other CCoAOMT‐like enzymes. Mutation of a single glycine, G46 towards a tyrosine was sufficient for a reversal of the unusual para‐ back to meta‐O‐methylation of flavanones and dihydroflavonols.
Publications
Unfolding by chemical denaturants and the linear extrapolation method are widely used to determine the free energy of proteins. Ribonuclease 3 from bullfrog shows an extraordinary behavior in guanidinium hydrochloride in comparison to its homologues ribonuclease A and onconase with a high transition midpoint of denaturation but an apparently low cooperativity. The analysis of the interdependence of thermal, urea‐, and guanidine hydrochloride‐induced unfolding revealed that whereas addition of urea resulted in the expected destabilization of all three proteins, guanidine hydrochloride acted diversely: in contrast to ribonuclease A and onconase, both of which were destabilized as expected, low concentrations of guanidine hydrochloride significantly stabilize ribonuclease 3 from bullfrog. This stabilizing effect was endorsed by in silico docking studies.
Publications
The synthesis and applications of 4-isocyanopermethylbutane-1,1,3-triol (IPB) as a new convertible isonitrile (isocyanide) for isocyanide-based multicomponent reactions (IMCRs) like Ugi, Ugi-Smiles, and Passerini reactions are described. The primary products obtained from these IMCRs can be converted into highly activated N-acylpyrroles, which upon treatment with nucleophiles can be transformed into carboxylic acids, esters, amides, alcohols, and olefins. In this sense the reagent can be seen as a neutral carbanion equivalent to formate (HO2C−), and carboxylates or carboxamides etc. (RNu-CO−).
Publications
Indazolones are medicinally relevant targets. Herein we disclose an improved synthesis to N′-(acetamido-2-yl)-substituted indazolones with four points of diversity introduced by Ugi-[M]-amination and -amidation. The ring closure can be achieved by either conventional palladium catalysis or with a ligandless copper protocol. When α-unbranched isocyanides were employed the sole cyclization products of the copper catalyzed reactions are the hitherto undescribed 2-hydroxy-3H-3,4a,9a-triaza-fluorene-4,9-diones.
Publications
A variety of 1,6-enynes were synthesized by an Ugi-reaction and further elaborated by a PdII/IV catalyzed oxidative cyclization to produce N-substituted 3-aza-bicyclo[3.1.0]hexan-2-ones. Different substitution patterns were tested to examine the scope and limitations of the amide tethered substrates.
Publications
Putrescine N ‐methyltransferase (PMT) catalyses S ‐adenosylmethionine (SAM)‐dependent methylation of putrescine in tropane alkaloid biosynthesis. PMT presumably evolved from the ubiquitous spermidine synthase (SPDS). SPDS protein structure suggested that only few amino acid exchanges in the active site were necessary to achieve PMT activity. Protein modelling, mutagenesis, and chimeric protein construction were applied to trace back evolution of PMT activity from SPDS. Ten amino acid exchanges in Datura stramonium SPDS dismissed the hypothesis of facile generation of PMT activity in existing SPDS proteins. Chimeric PMT and SPDS enzymes were active and indicated the necessity for a different putrescine binding site when PMT developed.
Publications
0