- Results as:
- Print view
- Endnote (RIS)
- BibTeX
- Table: CSV | HTML
Publications
Publications
Publications
Publications
Publications
Publications
Publications
Publications
Research Mission and Profile
Molecular Signal Processing
Bioorganic Chemistry
Biochemistry of Plant Interactions
Cell and Metabolic Biology
Independent Junior Research Groups
Program Center MetaCom
Publications
Good Scientific Practice
Research Funding
Networks and Collaborative Projects
Symposia and Colloquia
Alumni Research Groups
Publications
The regulation of shoot branching is an essential determinant of plant architecture, integrating multiple external and internal signals. One of the signaling pathways regulating branching involves the MAX (more axillary branches) genes. Two of the genes within this pathway, MAX3/CCD7 and MAX4/CCD8, encode carotenoid cleavage enzymes involved in generating a branch‐inhibiting hormone, recently identified as strigolactone. Here, we report the cloning of SlCCD7 from tomato. As in other species, SlCCD7 encodes an enzyme capable of cleaving cyclic and acyclic carotenoids. However, the SlCCD7 protein has 30 additional amino acids of unknown function at its C terminus. Tomato plants expressing a SlCCD7 antisense construct display greatly increased branching. To reveal the underlying changes of this strong physiological phenotype, a metabolomic screen was conducted. With the exception of a reduction of stem amino acid content in the transgenic lines, no major changes were observed. In contrast, targeted analysis of the same plants revealed significantly decreased levels of strigolactone. There were no significant changes in root carotenoids, indicating that relatively little substrate is required to produce the bioactive strigolactones. The germination rate of Orobanche ramosa seeds was reduced by up to 90% on application of extract from the SlCCD7 antisense lines, compared with the wild type. Additionally, upon mycorrhizal colonization, C13 cyclohexenone and C14 mycorradicin apocarotenoid levels were greatly reduced in the roots of the antisense lines, implicating SlCCD7 in their biosynthesis. This work demonstrates the diverse roles of MAX3/CCD7 in strigolactone production, shoot branching, source–sink interactions and production of arbuscular mycorrhiza‐induced apocarotenoids.
Publications
The first step of the plastidial methylerythritol phosphate (MEP) pathway is catalyzed by two isoforms of 1‐deoxy‐d‐ xylulose 5‐phosphate synthase (DXS1 and DXS2). In Medicago truncatula , MtDXS1 and MtDXS2 genes exhibit completely different expression patterns. Most prominently, colonization by arbuscular mycorrhizal (AM) fungi induces the accumulation of certain apocarotenoids (cyclohexenone and mycorradicin derivatives) correlated with the expression of MtDXS2 but not of MtDXS1. To prove a distinct function of DXS2, a selective RNAi approach on MtDXS2 expression was performed in transgenic hairy roots of M. truncatula. Repression of MtDXS2 consistently led to reduced transcript levels in mycorrhizal roots, and to a concomitant reduction of AM‐induced apocarotenoid accumulation. The transcript levels of MtDXS1 remained unaltered in RNAi plants, and no phenotypical changes in non‐AM plants were observed. Late stages of the AM symbiosis were adversely affected, but only upon strong repression with residual MtDXS2‐1 transcript levels remaining below approximately 10%. This condition resulted in a strong decrease in the transcript levels of MtPT4 , an AM‐specific plant phosphate transporter gene, and in a multitude of other AM‐induced plant marker genes, as shown by transcriptome analysis. This was accompanied by an increased proportion of degenerating and dead arbuscules at the expense of mature ones. The data reveal a requirement for DXS2‐dependent MEP pathway‐based isoprenoid products to sustain mycorrhizal functionality at later stages of the symbiosis. They further validate the concept of a distinct role for DXS2 in secondary metabolism, and offer a novel tool to selectively manipulate the levels of secondary isoprenoids by targeting their precursor supply.
Publications
The seeds of most members of the Brassicaceae accumulate high amounts of sinapine (sinapoylcholine) that is rapidly hydrolyzed during early stages of seed germination. One of three isoforms of sinapine esterase activity (BnSCE3) has been isolated from Brassica napus seedlings and subjected to trypsin digestion and spectrometric sequencing. The peptide sequences were used to isolate BnSCE3 cDNA, which was shown to contain an open reading frame of 1170 bp encoding a protein of 389 amino acids, including a leader peptide of 25 amino acids. Sequence comparison identified the protein as the recently cloned BnLIP2, i.e. a GDSL lipase‐like protein, which displays high sequence identity to a large number of corresponding plant proteins, including four related Arabidopsis lipases. The enzymes belong to the SGNH protein family, which use a catalytic triad of Ser‐Asp‐His, with serine as the nucleophile of the GDSL motif. The corresponding B. napus and Arabidopsis genes were heterologously expressed in Nicotiana benthamiana leaves and proved to confer sinapine esterase activity. In addition to sinapine esterase activity, the native B. napus protein (BnSCE3/BnLIP2) showed broad substrate specificity towards various other choline esters, including phosphatidylcholine. This exceptionally broad substrate specificity, which is common to a large number of other GDSL lipases in plants, hampers their functional analysis. However, the data presented here indicate a role for the GDSL lipase‐like BnSCE3/BnLIP2 as a sinapine esterase in members of the Brassicaceae, catalyzing hydrolysis of sinapine during seed germination, leading, via 1‐O ‐sinapoyl‐β‐glucose, to sinapoyl‐l ‐malate in the seedlings.
Publications
Members of the Brassicaceae family accumulate specific sinapate esters, i.e. sinapoylcholine (sinapine), which is considered as a major antinutritive compound in seeds of important crop plants like Brassica napus , and sinapoylmalate, which is implicated in UV‐B tolerance in leaves. We have studied the molecular regulation of the sinapate ester metabolism in B. napus , and we describe expression of genes, some properties of the encoded proteins and profiles of the metabolites and enzyme activities. The cloned cDNAs encoding the key enzymes of sinapine biosynthesis, UDP‐glucose (UDP‐Glc):B. napus sinapate glucosyltransferase (BnSGT1) and sinapoylglucose:B. napus choline sinapoyltransferase (BnSCT), were functionally expressed. BnSGT1 belongs to a subgroup of plant GTs catalysing the formation of 1‐O‐hydroxycinnamoyl‐β‐d ‐glucoses. BnSCT is another member of serine carboxypeptidase‐like (SCPL) family of acyltransferases. The B. napus genome contains at least two SGT and SCT genes, each derived from its progenitors B. oleracea and B. rapa . BnSGT1 and BnSCT activities are subjected to pronounced transcriptional regulation. BnSGT1 transcript level increases throughout early stages of seed development until the early cotyledonary stage, and stays constant in later stages. The highest level of BnSGT1 transcripts is reached in 2‐day‐old seedlings followed by a dramatic decrease. In contrast, expression of BnSCT is restricted to developing seeds. Regulation of gene expression at the transcript level seems to be responsible for changes of BnSGT1 and BnSCT activities during seed and seedling development of B. napus . Together with sinapine esterase (SCE) and sinapoylglucose:malate sinapoyltransferase (SMT), activities of BnSGT1 and BnSCT show a close correlation with the accumulation kinetics of the corresponding metabolites.
Publications
Isopentenyl diphosphate, the universal precursor of isoprenoids, is synthesized by two separate routes, one in the cytosol and the other in plastids. The initial step of the plastidial pathway is catalysed by 1‐deoxy‐d ‐xylulose 5‐phosphate synthase (DXS), which was previously thought to be encoded by a single‐copy gene. We have identified two distinct classes of DXS‐like cDNAs from the model legume Medicago truncatula . The deduced mature MtDXS1 and MtDXS2 proteins, excluding the predicted plastid‐targeting peptides, are similar in size (72.7 and 71.2 kDa) yet share only 70% identity in their amino acid sequences, and both encode functional DXS proteins as shown by heterologous expression in Escherichia coli. Available DXS sequences from other plants can easily be assigned to either class 1 or class 2. Partial sequences of multiple DXS genes in a single genome may be found in the databases of several monocot and dicot plants. Blot analyses of RNA from M. truncatula , maize, tomato and tobacco demonstrate preferential expression of DXS1 genes in many developing plant tissues except roots. By contrast, DXS2 transcript levels are low in most tissues but are strongly stimulated in roots upon colonization by mycorrhizal fungi, correlated with accumulation of carotenoids and apocarotenoids. Monoterpene‐synthesizing gland cells of leaf trichomes appear to be another site of DXS2 gene activity. The potential importance of DXS1 in many housekeeping functions and a still hypothetical role of DXS2 in the biosynthesis of secondary isoprenoids is discussed.
Publications
Plants and certain bacteria use a non‐mevalonate alternative route for the biosynthesis of many isoprenoids, including carotenoids. This route has been discovered only recently and has been designated the deoxyxylulose phosphate pathway or methylerythritol phosphate (MEP) pathway. We report here that colonisation of roots from wheat, maize, rice and barley by the arbuscular mycorrhizal fungal symbiont Glomus intraradices involves strong induction of transcript levels of two of the pivotal enzymes of the MEP pathway, 1‐deoxy‐D‐xylulose 5‐phosphate synthase (DXS) and 1‐deoxy‐D‐xylulose 5‐phosphate reductoisomerase (DXR). This induction is temporarily and spatially correlated with specific and concomitant accumulation of two classes of apocarotenoids, namely glycosylated C13 cyclohexenone derivatives and mycorradicin (C14) conjugates, the latter being a major component of the long‐known ‘yellow pigment’. A total of six cyclohexenone derivatives were characterised from mycorrhizal wheat and maize roots. Furthermore, the acyclic structure of mycorradicin described previously only from maize has been identified from mycorrhizal wheat roots after alkaline treatment of an ‘apocarotenoid complex’ of yellow root constituents. We propose a hypothetical scheme for biogenesis of both types of apocarotenoids from a common oxocarotenoid (xanthophyll) precursor. This is the first report demonstrating (i) that the plastidic MEP pathway is active in plant roots and (ii) that it can be induced by a fungus.
Publications
The molecular characterization of CYP72A1 from Catharanthus roseus (Madagascar periwinkle) was described nearly a decade ago, but the enzyme function remained unknown. We now show by in situ hybridization and immunohistochemistry that the expression in immature leaves is epidermis‐specific. It thus follows the pattern previously established for early enzymes in the pathway to indole alkaloids, suggesting that CYP72A1 may be involved in their biosynthesis. The early reactions in that pathway, i.e. from geraniol to strictosidine, contain several candidates for P450 activities. We investigated in this work two reactions, the conversion of 7‐deoxyloganin to loganin (deoxyloganin 7‐hydroxylase, DL7H) and the oxidative ring cleavage converting loganin into secologanin (secologanin synthase, SLS). The action of DL7H has not been demonstrated in vitro previously, and SLS has only recently been identified as P450 activity in one other plant. We show for the first time that both enzyme activities are present in microsomes from C . roseus cell cultures. We then tested whether CYP72A1 expressed in E. coli as a translational fusion with the C . roseus P450 reductase (P450Red) has one or both of these activities. The results show that CYP72A1 converts loganin into secologanin.
Publications
Based on protein sequence data and RT–PCR, a full length cDNA encoding betanidin 5‐O‐glucosyltransferase (5‐GT) was obtained from a cDNA library of Dorotheanthus bellidiformis (Burm.f.) N.E.Br. (Aizoaceae). 5‐GT catalyses the transfer of glucose from UDP‐glucose to the 5‐hydroxyl group of the chromogenic betanidin. Betanidin and its conjugates, referred to as betacyanins, are characteristic fruit and flower pigments in most members of the Caryophyllales, which fail to synthesise anthocyanins. The 5‐GT cDNA displayed homology to previously published glucosyltransferase sequences and exhibited high identity to sequences of several inducible glucosyltransferases of tobacco and tomato (Solanaceae). The open reading frame encodes a polypeptide of 489 amino acids with a calculated molecular mass of 55.24 kDa. The corresponding cDNA was expressed in Escherichia coli . The recombinant protein displayed identical substrate specificity compared to the native enzyme purified from D. bellidiformis cell suspension cultures. In addition to the natural substrate betanidin, ortho‐dihydroxylated flavonols and flavones were glycosylated preferentially at the B‐ring 4′‐hydroxyl group. 5‐GT is the first enzyme of betalain biosynthesis in plants, of which the corresponding cDNA has been cloned and expressed. The results are discussed in relation to molecular evolution of plant glucosyl‐ transferases.