- Results as:
- Print view
- Endnote (RIS)
- BibTeX
- Table: CSV | HTML
Publications
Publications
Publications
Publications
Publications
Publications
Publications
Publications
Publications
Research Mission and Profile
Molecular Signal Processing
Bioorganic Chemistry
Biochemistry of Plant Interactions
Cell and Metabolic Biology
Independent Junior Research Groups
Program Center MetaCom
Publications
Good Scientific Practice
Research Funding
Networks and Collaborative Projects
Symposia and Colloquia
Alumni Research Groups
Publications
Amino acids (AAs), important constituents of natural moisturizing factors (NMFs) of the skin are decreased in diseased conditions such as psoriasis and atopic dermatitis. No study so far investigated the uptake of AAs into isolated corneocytes (COR). The present study was performed using 19 AAs, including taurine (TAU), to measure their amount diffused into the COR and binding of these AAs to keratin. Incubation of alanine, aspartic acid, asparagine, glutamine, glutamic acid, histidine, proline, serine and TAU with the isolated COR showed uptake after 24 h of 51.6, 95.4, 98.6, 94.1, 95.6, 90.1, 94.6, 72.9 and 57.8 %, respectively, into the COR but no binding with keratin. Uptake of TAU was validated by time dependent in-vitro diffusion models 'without COR and 'with COR'. The time dependent curve fitting showed that in in-vitro diffusion model 'without COR' there was no change in the total concentration of TAU until 72 hours, while in diffusion model 'with COR' the total conc. decreased to 37.8 % after 72 hours. The Pearson's correlation coefficient 'r' between the conc. curves of both in-vitro diffusion models was -0.54 that was an evidence of significant amount of TAU uptake by the COR. AAs as part of the NMFs have a great potential to be diffused into the COR. This property of the AAs can be employed in further dermatological research on diseased or aged skin conditions with NMFs deficiency.
Publications
The essential trace element selenium (Se) is controversially discussed concerning its role in health and disease. Its various physiological functions are largely mediated by Se incorporation in the catalytic center of selenoproteins. In order to gain insights into the impact of Se deficiency and of supplementation with different Se compounds (selenite, selenate, selenomethionine) at defined concentrations (recommended, 150 μg/kg diet; excessive, 750 μg/kg diet) in murine colon tissues, a 20‐week feeding experiment was performed followed by analysis of the protein expression pattern of colon tissue specimens by 2D‐DIGE and MALDI‐TOF MS. Using this approach, 24 protein spots were identified to be significantly regulated by the different Se compounds. These included the antioxidant enzyme peroxiredoxin‐5 (PRDX5), proteins with binding capabilities, such as cofilin‐1 (COF1), calmodulin, and annexin A2 (ANXA2), and proteins involved in catalytic processes, such as 6‐phosphogluconate dehydrogenase (6PGD). Furthermore, the Se compounds demonstrated a differential impact on the expression of the identified proteins. Selected target structures were validated by qPCR and Western blot which mainly confirmed the proteomic profiling data. Thus, novel Se‐regulated proteins in colon tissues have been identified, which expand our understanding of the physiologic role of Se in colon tissue.
Publications
Hydnora abyssinica A.Br. (Hydnoraceae), a holoparasitic herb, is for the first time recorded for Abyan governorate of South Yemen. Flowers of this species were studied for their ethnobotanical, biological and chemical properties for the first time. In South Yemen, they are traditionally used as wild food and to cure stomach diseases, gastric ulcer and cancer. Phytochemical analysis of the extracts showed the presence of terpenes, tannins, phenols, and flavonoids. The volatile components of the air-dried powdered flowers were identified using a static headspace GC/MS analysis as acetic acid, ethyl acetate, sabinene, α-terpinene, (+)-D-limonene and γ-terpinene. These volatile compounds that characterize the odor and taste of the flowers were detected for the first time in a species of the family Hydnoraceae. The flowers were extracted by n-hexane, dichlormethane, ethyl acetate, ethanol, methanol and water. With exception of the water extract all extracts demonstrated activities against Gram-positive bacteria as well as remarkable radical scavenging activities in DPPH assay. Ethyl acetate, methanol and water extracts exhibited good antifungal activities. The cytotoxic activity of the extracts against FL cells, measured in neutral red assay, was only weak (IC50 > 500 μg /mL). The results justify the traditional use of the flowers of Hydnora abyssinica in South Yemen.
Publications
PTMs are defined as covalent additions to functional groups of amino acid residues in proteins like phosphorylation, glycosylation, S‐nitrosylation, acetylation, methylation, lipidation, SUMOylation as well as oxidation. Oxidation of proteins has been characterized as a double‐edged sword. While oxidative modifications, in particular of cysteine residues, are widely involved in the regulation of cellular homeostasis, oxidative stress resulting in the oxidation of biomolecules along with the disruption of their biological functions can be associated with the development of diseases, such as cancer, diabetes, and neurodegenerative diseases, respectively. This is also the case for advanced glycation end products, which result from chemical reactions of keto compounds such as oxidized sugars with proteins. The role of oxidative modifications under physiological and pathophysiological conditions remains largely unknown. Recently, novel technologies have been established that allow the enrichment, identification, and characterization of specific oxidative PTMs (oxPTMs). This is essential to develop strategies to prevent and treat diseases that are associated with oxidative stress. Therefore this review will focus on (i) the methods and technologies, which are currently applied for the detection, identification, and quantification of oxPTMs including the design of high throughput approaches and (ii) the analyses of oxPTMs related to physiological and pathological conditions.
Publications
We applied an extended charge‐based fractional diagonal chromatography (ChaFRADIC) workflow to analyze the N‐terminal proteome of Arabidopsis thaliana seedlings. Using iTRAQ protein labeling and a multi‐enzyme digestion approach including trypsin, GluC, and subtilisin, a total of 200 μg per enzyme, and measuring only one third of each ChaFRADIC‐enriched fraction by LC‐MS, we quantified a total of 2791 unique N‐terminal peptides corresponding to 2249 different unique N‐termini from 1270 Arabidopsis proteins. Our data indicate the power, reproducibility, and sensitivity of the applied strategy that might be applicable to quantify proteolytic events from as little as 20 μg of protein per condition across up to eight different samples. Furthermore, our data clearly reflect the methionine excision dogma as well as the N‐end rule degradation pathway (NERP) discriminating into a stabilizing or destabilizing function of N‐terminal amino acid residues. We found bona fide NERP destabilizing residues underrepresented, and the list of neo N‐termini from wild type samples may represent a helpful resource during the evaluation of NERP substrate candidates. All MS data have been deposited in the ProteomeXchange with identifier PXD001855 (http://proteomecentral.proteomexchange.org/dataset/PXD001855).
Publications
Transgenic Arabidopsis conditionally expressing the bacterial avrRpm1 type III effector under the control of a dexamethasone‐responsive promoter were used for proteomics studies. This model system permits study of an individual effector without interference from additional bacterial components. Coupling of different prefractionation approaches to high resolution 2‐DE facilitated the discovery of low abundance proteins – enabling the identification of proteins that have escaped detection in similar experiments. A total of 34 differentially regulated protein spots were identified. Four of these (a remorin, a protein phosphatase 2C (PP2C), an RNA‐binding protein, and a C2‐domain‐containing protein) are potentially early signaling components in the interaction between AvrRpm1 and the cognate disease resistance gene product, resistance to Pseudomonas syringae pv. maculicola 1 (RPM1). For the remorin and RNA‐binding protein, involvement of PTM and post‐transcriptional regulation are implicated, respectively.
Publications
The occurrence of a nuclear cataract in the eye lens due to disruption of the α3C×46 connexin gene, Gja3 , is dependent on strain background in a mouse model, implicating factors that modify the pathology. The differences upon cataractogenesis in the urea soluble proteins of the lens of two mouse strains, C57BL/6J and 129/SvJ, were analyzed by a comparative proteomics approach. Determination of the complete proteome of an organ offers the opportunity to characterize at a molecular level, differences in gene expression and PTMs occurring during pathology and between individuals. The abundance of 63 protein species was altered between the strains. A unique aspect of this study is the identification of chaperonin subunit 6A, mortalin, ERp29, and syntaxin‐binding protein 6 in the eye lens. DNA polymorphisms resulting in nonconservative amino acid changes that led to altered physicochemical properties of the proteins were detected for mortalin, chaperonin subunit 6A, annexin A1, and possibly γ‐N crystallin. The results show HSP27/25 and/or ERp29 are the likely major modifying factors for cataractogenesis. Extension of the results suggests that small heat‐shock proteins have a major role for influencing cataract formation in humans.
Publications
The dynamics of a proteome can only be addressed with large‐scale, high‐throughput methods. To cope with the inherent complexity, techniques based on targeted quantification using proteotypic peptides are arising. This is an essential systems biology approach; however, for the exploratory discovery of unexpected markers, nontargeted detection of proteins, and protein modifications is indispensable. We present a rapid label‐free shotgun proteomics approach that extracts relevant phenotype‐specific peptide product ion spectra in an automated workflow without prior identification. These product ion spectra are subsequently sequenced with database search and de novo prediction algorithms. We analyzed six potato tuber cultivars grown on three plots of two geographically separated fields in Germany. For data mining about 1.5 million spectra from 107 analyses were aligned and statistically examined in approximately 1 day. Several cultivar‐specific protein markers were detected. Based on de novo ‐sequencing a dominant protein polymorphism not detectable in the available EST‐databases was assigned exclusively to a specific potato cultivar. The approach is applicable to organisms with unsequenced or incomplete genomes and to the automated extraction of relevant mass spectra that potentially cannot be identified by genome/EST‐based search algorithms.
Publications
Exploration of the lenticular proteome poses a challenging and worthwhile undertaking as cataracts, the products of a disease phenotype elicited by this proteome, remains the leading cause of vision impairment worldwide. The complete ten day old lens proteome of Mus musculus C57BL/6J was resolved into 900 distinct spots by large gel carrier ampholyte based 2‐DE. The predicted amino acid sequences of all 16 crystallins ubiquitous in mammals were corroborated by mass spectrometry (MS). In detailed individual spot analyses, the primary structure of the full murine C57BL/6J beaded filament component phakinin CP49 was sequenced by liquid chromatography/electrospray ionization‐tandem MS and amended at two positions. This definitive polypeptide sequence was aligned to the mouse genome, thus identifying the entire C57BL/6J genomic coding region. Also, two murine C57BL/6J polypeptides, both previously classified as gamma F crystallin, were clearly distinguished by MS and electrophoretic mobility. Both were assigned to their respective genes, one of the polypeptides was reclassified as C57BL/6J gamma E crystallin. Building on these data and previous investigations an updated crystallin reference map was put forth and several non crystallin lenticular components were examined. These results represent the first part of a comprehensive investigation of the mouse lens proteome (http://www.mpiib‐berlin.mpg.de/2D‐PAGE) with emphasis on understanding genetic effects on proteins and disease development.
Publications
Chemical investigation of Stephania rotunda Lour. growing in Viet Nam led to the isolation and structural elucidation of three new alkaloids, 5-hydroxy-6,7-dimethoxy-3,4-dihydroisoquinolin-1(2H)-one (1), thaicanine 4-O-β-L-glucoside (6), as well as (–)-thaicanine N-oxide (4-hydroxycorynoxidine) (8), along with 23 known alkaloids. These structures were determined on the basis of MS and NMR spectroscopic data.