- Results as:
- Print view
- Endnote (RIS)
- BibTeX
- Table: CSV | HTML
Publications
Publications
Publications
Publications
Publications
Publications
Publications
Publications
Publications
Publications
Research Mission and Profile
Molecular Signal Processing
Bioorganic Chemistry
Biochemistry of Plant Interactions
Cell and Metabolic Biology
Independent Junior Research Groups
Program Center MetaCom
Publications
Good Scientific Practice
Research Funding
Networks and Collaborative Projects
Symposia and Colloquia
Alumni Research Groups
Publications
In plant cells, plastids form elongated extensions called stromules, the regulation and purposes of which remain unclear. Here, we quantitatively explore how different stromule structures serve to enhance the ability of a plastid to interact with other organelles: increasing the effective space for interaction and biomolecular exchange between organelles. Interestingly, electron microscopy and confocal imaging showed that the cytoplasm in Arabidopsis thaliana and Nicotiana benthamiana epidermal cells is extremely thin (around 100 nm in regions without organelles), meaning that inter-organelle interactions effectively take place in 2D. We combine these imaging modalities with mathematical modeling and new in planta experiments to demonstrate how different stromule varieties (single or multiple, linear or branching) could be employed to optimize different aspects of inter-organelle interaction capacity in this 2D space. We found that stromule formation and branching provide a proportionally higher benefit to interaction capacity in 2D than in 3D. Additionally, this benefit depends on optimal plastid spacing. We hypothesize that cells can promote the formation of different stromule architectures in the quasi-2D cytoplasm to optimize their interaction interface to meet specific requirements. These results provide new insight into the mechanisms underlying the transition from low to high stromule numbers, the consequences for interaction with smaller organelles, how plastid access and plastid to nucleus signaling are balanced and the impact of plastid density on organelle interaction.
Publications
Three novel complexes of deprotonated diflunisal (dif) with neocuproine (neo) were synthesized and characterized via elemental, spectral (UV-vis, FTIR, fluorescence, and mass spectrometry), and single-crystal X-ray diffraction analyses. Although the compounds shared a similar composition of [MCl(dif)(neo)], where M represents Zn(II) (1), Co(II) (2) and Cu(II) (3), only 1 and 2 were isostructural, while 3 differed in both the molecular and supramolecular structures. In all three complex molecules, the central atom is coordinated by two nitrogen atoms of neo in a bidentate chelate mode, and one chlorido ligand and dif is bonded in either a monodentate mode via one oxygen atom of the carboxylate in 1 and 2 or in a bidentate chelate mode via both carboxylate oxygen atoms in 3. All three compounds demonstrated remarkable antiproliferative activity against human prostate (PC-3), colon (HCT116) and breast (MDA-MB-468) cancer cell lines with IC50 values in the nanomolar range, with the lowest values observed in the case of PC-3 and MDA-MB-468 with 2 (20.0 nM) and 3 (31.1 nM), respectively. Moreover, complex 2, as the most active, was further investigated for its potential to induce perturbations in the cell cycle of PC-3 cells. The results indicated an induction of caspase-independent apoptosis. The interaction of the complexes with genomic DNA isolated from the respective cancer cell lines was evaluated for the intercalative mode, with binding strength correlated with the antiproliferative activity against PC-3 and MDA-MB-468 cancer cell lines.
Publications
For the development of anticancer drugs with higher activity and reduced toxicity, two approaches were combined: preparation of platinum(IV) complexes exhibiting higher stability compared to their platinum(II) counterparts and loading them into mesoporous silica SBA-15 with the aim to utilise the passive enhanced permeability and retention (EPR) effect of nanoparticles for accumulation in tumour tissues. Three conjugates based on a cisplatin scaffold bearing the anti-inflammatory drugs naproxen, ibuprofen or flurbiprofen in the axial positions (1, 2 and 3, respectively) were synthesised and loaded into SBA-15 to afford the mesoporous silica nanoparticles (MSNs) SBA-15|1, SBA-15|2 and SBA-15|3. Superior antiproliferative activity of both free and immobilised conjugates in a panel of four breast cancer cell lines (MDA-MB-468, HCC1937, MCF-7 and BT-474) with markedly increased cytotoxicity with respect to cisplatin was demonstrated. All compounds exhibit highest activity against the triple-negative cell line MDA-MB-468, with conjugate 1 being the most potent. However, against MCF-7 and BT-474 cell lines, the most notable improvement was found, with IC50 values up to 240-fold lower than cisplatin. Flow cytometry assays clearly show that all compounds induce apoptotic cell death elevating the levels of both early and late apoptotic cells. Furthermore, autophagy as well as formation of reactive oxygen species (ROS) and nitric oxide (NO) were elevated to a similar or greater extent than with cisplatin.
Publications
Plant cell walls are sophisticated carbohydrate-rich structures representing the immediate contact surface with the extracellular environment, often serving as the first barrier against biotic and abiotic stresses. Notably, a variety of perturbations in plant cell walls result in upregulated jasmonate (JA) production, a phytohormone with essential roles in defense and growth responses. Hence, cell wall-derived signals can initiate intracellular JA-mediated responses and the elucidation of the underlying signaling pathways could provide novel insights into cell wall maintenance and remodeling, as well as advance our understanding on how is JA biosynthesis initiated. This Mini Review will describe current knowledge about cell wall-derived damage signals and their effects on JA biosynthesis, as well as provide future perspectives.
Publications
SBA-15|Sn3, a mesoporous silica-based material (derivative of SBA-15) loaded with an organotin compound Ph3Sn(CH2)3OH (Sn3), possesses improved antitumor potential against the A2780 high-grade serous ovarian carcinoma cell line in comparison to Sn3. It is demonstrated that both the compound and the nanostructured material are internalized by the A2780 cells. A similar mode of action of Sn3 and SBA-15|Sn3 against the A2780 cell line was found. Explicitly, induction of apoptosis, caspase 2, 3, 8 and 9 activation, accumulation of cells in the hypodiploid phase as well as accumulation of ROS were observed. Interestingly, Sn3 loaded in the mesoporous silica-based material needed to reach a concentration 3.5 times lower than the IC50 value of the Sn3 compound, pointing out a higher effect of the SBA-15|Sn3 than Sn3 alone. Clonogenic potential, growth in 3D culture as well as mobility of cells were disturbed in the presence of SBA-15|Sn3. Such behavior could be associated with the suppression of p-38 MAPK. Less profound effect of Sn3 compared to SBA-15|Sn3 could be attributed to a different regulation of p-38 and STAT-3, which are mainly responsible for an appropriate cellular response to diverse stimuli or metastatic properties.
Publications
Correction for ‘Synthesis, cytotoxic and hydrolytic studies of titanium complexes anchored by a tripodal diamine bis(phenolate) ligand’ by Sónia Barroso et al., Dalton Trans., 2014, 43, 17422–17433.
Publications
The reactivity, cytotoxic studies and hydrolytic behaviour of diamine bis(phenolate) titanium complexes are reported. The reactions of [Ti(tBu2O2NN′)Cl]2(μ-O) (1) with LiOiPr or HOiPr in the presence of NEt3, aiming at the synthesis of the alkoxido derivative of 1 led to no reaction or to the synthesis of the monomeric complex [Ti(tBu2O2NN′)(OiPr)2] (3), respectively. A small amount of the alkoxidotitanium dimer [Ti(tBu2O2NN′)(OiPr)]2(μ-O) (2) crystallized out of a solution of 3 and DFT calculations showed that the transformation of 1 into 3 is a thermodynamically favorable process in the presence of a base (NEt3) (ΔG = −14.7 kcal mol−1). 2 was quantitatively obtained through the direct reaction of the ligand precursor H2(tBu2O2NN′) with titanium tetra(isopropoxido). Further reaction of 2 with an excess of TMSCl was revealed to be the most suitable method for the preparation of [Ti(tBu2O2NN′)Cl2] (4). 1 and 3 disclosed cytotoxic activity towards HeLa, Fem-x, MDA-MB-361 and K562 cells and 1 exhibited moderate binding affinity to FS-DNA. 1H NMR hydrolysis studies attested the fast decomposition of 4 in the presence of D2O. The hydrolysis of 3 is slower and proceeds through the formation of [Ti(tBu2O2NN′)(OH)]2(μ-O) (5) that was crystallographically characterized. Upon D2O addition 1 immediately forms complex new species, stable in solution for long periods (weeks).
Publications
Recognition of pathogen-associated molecular patterns (PAMPs) induces multiple defense mechanisms to limit pathogen growth. Here, we show that the Arabidopsis thaliana tandem zinc finger protein 9 (TZF9) is phosphorylated by PAMP-responsive mitogen-activated protein kinases (MAPKs) and is required to trigger a full PAMP-triggered immune response. Analysis of a tzf9 mutant revealed attenuation in specific PAMP-triggered reactions such as reactive oxygen species accumulation, MAPK activation and, partially, the expression of several PAMP-responsive genes. In accordance with these weaker PAMP-triggered responses, tzf9 mutant plants exhibit enhanced susceptibility to virulent Pseudomonas syringae pv. tomato DC3000. Visualization of TZF9 localization by fusion to green fluorescent protein revealed cytoplasmic foci that co-localize with marker proteins of processing bodies (P-bodies). This localization pattern is affected by inhibitor treatments that limit mRNA availability (such as cycloheximide or actinomycin D) or block nuclear export (leptomycin B). Coupled with its ability to bind the ribohomopolymers poly(rU) and poly(rG), these results suggest involvement of TZF9 in post-transcriptional regulation, such as mRNA processing or storage pathways, to regulate plant innate immunity.
Publications
Reactions of fac-[PtMe3(4,4′-R2bpy)(Me2CO)][BF4] (R = H, 1a; tBu, 1b) and fac-[PtMe3(OAc-κ2O,O′)(Me2CO)] (2), respectively, with thioglycosides containing thioethyl (ch-SEt) and thioimidate (ch-STaz, Taz = thiazoline-2-yl) anomeric groups led to the formation of the carbohydrate platinum(IV) complexes fac-[PtMe3(4,4′-R2bpy)(ch*)][BF4] (ch* = ch-SEt, 8–14; ch-STaz, 15–23) and fac-[PtMe3(OAc-κ2O,O′)(ch*)] (ch* = ch-SEt, 24–28; ch-STaz = 29–35), respectively. NMR (1H, 13C, 195Pt) spectroscopic investigations and a single-crystal X-ray diffraction analysis of 19 (ch-STaz = 2-thiazolinyl 2,3,4,6-tetra-O-benzoyl-1-thio-β-D-galactopyranose) revealed the S coordination of the ch-SEt glycosides and the N coordination of the ch-STaz glycosides. Furthermore, X-ray structure analyses of the two decomposition products fac-[PtMe3(bpy)(STazH-κS)][BF4] (21a) and 1,6-anhydro-2,3,4-tri-O-benzoyl-β-D-glucopyranose (23a), where a cleavage of the anomeric C–S bond had occurred in both cases, gave rise to the assumption that this decomposition was mediated due to coordination of the thioglycosides to the high electrophilic platinum(IV) atom, in non-strictly dried solutions. Reactions of fac-[PtMe3(Me2CO)3][BF4] (3) with ch-SEt as well as with ch-SPT and ch-Sbpy thioglycosides (PT = 4-(pyridine-2-yl)-thiazole-2-yl; bpy = 2,2′-bipyridine-6-yl), having N,S and N,N heteroaryl anomeric groups, respectively, led to the formation of platinum(IV) complexes of the type fac-[PtMe3(ch*)][BF4] (ch* = ch-SEt, 36–40, ch-SPT 42–44, ch-Sbpy45, 46). The thioglycosides were found to be coordinated in a tridentate κS,κ2O,O′, κS,κN,κO and κS,κ2N,N′ coordination mode, respectively. Analogous reactions with ch-STaz ligands succeeded for 2-thiazolinyl 2,3,4-tri-O-benzyl-6-O-(2,2′-bipyridine-6-yl)-1-thio-β-D-glucopyranoside (5h) resulting in fac-[PtMe3(ch-STaz)][BF4] (41, ch-STaz = 5h), having a κ3N,N′,N′′coordinated thioglycoside ligand.
Publications
Nicotiana tabacum (tobacco) plants have short and long glandular trichomes. There is evidence that tobacco trichomes play several roles in the defense against biotic and abiotic stresses. cDNA libraries were constructed from control and cadmium (Cd)-treated leaf trichomes. Almost 2,000 expressed sequence tag (EST) cDNA clones were sequenced to analyze gene expression in control and Cd-treated leaf trichomes. Genes for stress response as well as for primary metabolism scored highly, indicating that the trichome is a biologically active and stress-responsive tissue. Reverse transcription–PCR (RT–PCR) analysis demonstrated that antipathogenic T-phylloplanin-like proteins, glutathione peroxidase and several classes of pathogenesis-related (PR) proteins were expressed specifically or dominantly in trichomes. Cysteine-rich PR proteins, such as non-specific lipid transfer proteins (nsLTPs) and metallocarboxypeptidase inhibitors, are candidates for the sequestration of metals. The expression of osmotin and thaumatin-like proteins was induced by Cd treatment in both leaves and trichomes. Confocal laser scanning microscopy (CLSM) showed that glutathione levels in tip cells of both long and short trichomes were higher than those in other types of leaf cells, indicating the presence of an active sulfur-dependent protective system in trichomes. Our results revealed that the trichome-specific transcriptome approach is a powerful tool to investigate the defensive functions of trichomes against both abiotic and biotic stress. Trichomes are shown to be an enriched source of useful genes for molecular breeding towards stress-tolerant plants.