- Results as:
- Print view
- Endnote (RIS)
- BibTeX
- Table: CSV | HTML
Publications
Publications
Publications
Publications
Publications
Publications
Publications
Publications
Publications
Publications
Research Mission and Profile
Molecular Signal Processing
Bioorganic Chemistry
Biochemistry of Plant Interactions
Cell and Metabolic Biology
Independent Junior Research Groups
Program Center MetaCom
Publications
Good Scientific Practice
Research Funding
Networks and Collaborative Projects
Symposia and Colloquia
Alumni Research Groups
Publications
Three novel complexes of deprotonated diflunisal (dif) with neocuproine (neo) were synthesized and characterized via elemental, spectral (UV-vis, FTIR, fluorescence, and mass spectrometry), and single-crystal X-ray diffraction analyses. Although the compounds shared a similar composition of [MCl(dif)(neo)], where M represents Zn(II) (1), Co(II) (2) and Cu(II) (3), only 1 and 2 were isostructural, while 3 differed in both the molecular and supramolecular structures. In all three complex molecules, the central atom is coordinated by two nitrogen atoms of neo in a bidentate chelate mode, and one chlorido ligand and dif is bonded in either a monodentate mode via one oxygen atom of the carboxylate in 1 and 2 or in a bidentate chelate mode via both carboxylate oxygen atoms in 3. All three compounds demonstrated remarkable antiproliferative activity against human prostate (PC-3), colon (HCT116) and breast (MDA-MB-468) cancer cell lines with IC50 values in the nanomolar range, with the lowest values observed in the case of PC-3 and MDA-MB-468 with 2 (20.0 nM) and 3 (31.1 nM), respectively. Moreover, complex 2, as the most active, was further investigated for its potential to induce perturbations in the cell cycle of PC-3 cells. The results indicated an induction of caspase-independent apoptosis. The interaction of the complexes with genomic DNA isolated from the respective cancer cell lines was evaluated for the intercalative mode, with binding strength correlated with the antiproliferative activity against PC-3 and MDA-MB-468 cancer cell lines.
Publications
For the development of anticancer drugs with higher activity and reduced toxicity, two approaches were combined: preparation of platinum(IV) complexes exhibiting higher stability compared to their platinum(II) counterparts and loading them into mesoporous silica SBA-15 with the aim to utilise the passive enhanced permeability and retention (EPR) effect of nanoparticles for accumulation in tumour tissues. Three conjugates based on a cisplatin scaffold bearing the anti-inflammatory drugs naproxen, ibuprofen or flurbiprofen in the axial positions (1, 2 and 3, respectively) were synthesised and loaded into SBA-15 to afford the mesoporous silica nanoparticles (MSNs) SBA-15|1, SBA-15|2 and SBA-15|3. Superior antiproliferative activity of both free and immobilised conjugates in a panel of four breast cancer cell lines (MDA-MB-468, HCC1937, MCF-7 and BT-474) with markedly increased cytotoxicity with respect to cisplatin was demonstrated. All compounds exhibit highest activity against the triple-negative cell line MDA-MB-468, with conjugate 1 being the most potent. However, against MCF-7 and BT-474 cell lines, the most notable improvement was found, with IC50 values up to 240-fold lower than cisplatin. Flow cytometry assays clearly show that all compounds induce apoptotic cell death elevating the levels of both early and late apoptotic cells. Furthermore, autophagy as well as formation of reactive oxygen species (ROS) and nitric oxide (NO) were elevated to a similar or greater extent than with cisplatin.
Publications
Changes in cellular calcium levels are one of the earliest signalling events in plants exposed to pathogens or other exogenous factors. In a genetic screen, we identified an Arabidopsis thaliana ‘changed calcium elevation 1 ’ (cce1 ) mutant with attenuated calcium response to the bacterial flagellin flg22 peptide and several other elicitors. Whole genome re‐sequencing revealed a mutation in ALG12 (Asparagine‐Linked Glycosylation 12 ) that encodes the mannosyltransferase responsible for adding the eighth mannose residue in an α‐1,6 linkage to the dolichol‐PP‐oligosaccharide N ‐glycosylation glycan tree precursors. While properly targeted to the plasma membrane, misglycosylation of several receptors in the cce1 background suggests that N ‐glycosylation is required for proper functioning of client proteins.
Publications
SBA-15|Sn3, a mesoporous silica-based material (derivative of SBA-15) loaded with an organotin compound Ph3Sn(CH2)3OH (Sn3), possesses improved antitumor potential against the A2780 high-grade serous ovarian carcinoma cell line in comparison to Sn3. It is demonstrated that both the compound and the nanostructured material are internalized by the A2780 cells. A similar mode of action of Sn3 and SBA-15|Sn3 against the A2780 cell line was found. Explicitly, induction of apoptosis, caspase 2, 3, 8 and 9 activation, accumulation of cells in the hypodiploid phase as well as accumulation of ROS were observed. Interestingly, Sn3 loaded in the mesoporous silica-based material needed to reach a concentration 3.5 times lower than the IC50 value of the Sn3 compound, pointing out a higher effect of the SBA-15|Sn3 than Sn3 alone. Clonogenic potential, growth in 3D culture as well as mobility of cells were disturbed in the presence of SBA-15|Sn3. Such behavior could be associated with the suppression of p-38 MAPK. Less profound effect of Sn3 compared to SBA-15|Sn3 could be attributed to a different regulation of p-38 and STAT-3, which are mainly responsible for an appropriate cellular response to diverse stimuli or metastatic properties.
Publications
Correction for ‘Synthesis, cytotoxic and hydrolytic studies of titanium complexes anchored by a tripodal diamine bis(phenolate) ligand’ by Sónia Barroso et al., Dalton Trans., 2014, 43, 17422–17433.
Publications
The reactivity, cytotoxic studies and hydrolytic behaviour of diamine bis(phenolate) titanium complexes are reported. The reactions of [Ti(tBu2O2NN′)Cl]2(μ-O) (1) with LiOiPr or HOiPr in the presence of NEt3, aiming at the synthesis of the alkoxido derivative of 1 led to no reaction or to the synthesis of the monomeric complex [Ti(tBu2O2NN′)(OiPr)2] (3), respectively. A small amount of the alkoxidotitanium dimer [Ti(tBu2O2NN′)(OiPr)]2(μ-O) (2) crystallized out of a solution of 3 and DFT calculations showed that the transformation of 1 into 3 is a thermodynamically favorable process in the presence of a base (NEt3) (ΔG = −14.7 kcal mol−1). 2 was quantitatively obtained through the direct reaction of the ligand precursor H2(tBu2O2NN′) with titanium tetra(isopropoxido). Further reaction of 2 with an excess of TMSCl was revealed to be the most suitable method for the preparation of [Ti(tBu2O2NN′)Cl2] (4). 1 and 3 disclosed cytotoxic activity towards HeLa, Fem-x, MDA-MB-361 and K562 cells and 1 exhibited moderate binding affinity to FS-DNA. 1H NMR hydrolysis studies attested the fast decomposition of 4 in the presence of D2O. The hydrolysis of 3 is slower and proceeds through the formation of [Ti(tBu2O2NN′)(OH)]2(μ-O) (5) that was crystallographically characterized. Upon D2O addition 1 immediately forms complex new species, stable in solution for long periods (weeks).
Publications
Caffeoyl‐coenzyme A O‐methyltransferase (CCoAOMT)‐like proteins from plants display a conserved position specificity towards the meta‐position of aromatic vicinal dihydroxy groups, consistent with the methylation pattern observed in vivo. A CCoAOMT‐like enzyme identified from Arabidopsis thaliana encoded by the gene At4g26220 shows a strong preference for methylating the para position of flavanones and dihydroflavonols, whereas flavones and flavonols are methylated in the meta‐position. Sequence alignments and homology modelling identified several unique amino acids compared to motifs of other CCoAOMT‐like enzymes. Mutation of a single glycine, G46 towards a tyrosine was sufficient for a reversal of the unusual para‐ back to meta‐O‐methylation of flavanones and dihydroflavonols.
Publications
Unfolding by chemical denaturants and the linear extrapolation method are widely used to determine the free energy of proteins. Ribonuclease 3 from bullfrog shows an extraordinary behavior in guanidinium hydrochloride in comparison to its homologues ribonuclease A and onconase with a high transition midpoint of denaturation but an apparently low cooperativity. The analysis of the interdependence of thermal, urea‐, and guanidine hydrochloride‐induced unfolding revealed that whereas addition of urea resulted in the expected destabilization of all three proteins, guanidine hydrochloride acted diversely: in contrast to ribonuclease A and onconase, both of which were destabilized as expected, low concentrations of guanidine hydrochloride significantly stabilize ribonuclease 3 from bullfrog. This stabilizing effect was endorsed by in silico docking studies.
Publications
Reactions of fac-[PtMe3(4,4′-R2bpy)(Me2CO)][BF4] (R = H, 1a; tBu, 1b) and fac-[PtMe3(OAc-κ2O,O′)(Me2CO)] (2), respectively, with thioglycosides containing thioethyl (ch-SEt) and thioimidate (ch-STaz, Taz = thiazoline-2-yl) anomeric groups led to the formation of the carbohydrate platinum(IV) complexes fac-[PtMe3(4,4′-R2bpy)(ch*)][BF4] (ch* = ch-SEt, 8–14; ch-STaz, 15–23) and fac-[PtMe3(OAc-κ2O,O′)(ch*)] (ch* = ch-SEt, 24–28; ch-STaz = 29–35), respectively. NMR (1H, 13C, 195Pt) spectroscopic investigations and a single-crystal X-ray diffraction analysis of 19 (ch-STaz = 2-thiazolinyl 2,3,4,6-tetra-O-benzoyl-1-thio-β-D-galactopyranose) revealed the S coordination of the ch-SEt glycosides and the N coordination of the ch-STaz glycosides. Furthermore, X-ray structure analyses of the two decomposition products fac-[PtMe3(bpy)(STazH-κS)][BF4] (21a) and 1,6-anhydro-2,3,4-tri-O-benzoyl-β-D-glucopyranose (23a), where a cleavage of the anomeric C–S bond had occurred in both cases, gave rise to the assumption that this decomposition was mediated due to coordination of the thioglycosides to the high electrophilic platinum(IV) atom, in non-strictly dried solutions. Reactions of fac-[PtMe3(Me2CO)3][BF4] (3) with ch-SEt as well as with ch-SPT and ch-Sbpy thioglycosides (PT = 4-(pyridine-2-yl)-thiazole-2-yl; bpy = 2,2′-bipyridine-6-yl), having N,S and N,N heteroaryl anomeric groups, respectively, led to the formation of platinum(IV) complexes of the type fac-[PtMe3(ch*)][BF4] (ch* = ch-SEt, 36–40, ch-SPT 42–44, ch-Sbpy45, 46). The thioglycosides were found to be coordinated in a tridentate κS,κ2O,O′, κS,κN,κO and κS,κ2N,N′ coordination mode, respectively. Analogous reactions with ch-STaz ligands succeeded for 2-thiazolinyl 2,3,4-tri-O-benzyl-6-O-(2,2′-bipyridine-6-yl)-1-thio-β-D-glucopyranoside (5h) resulting in fac-[PtMe3(ch-STaz)][BF4] (41, ch-STaz = 5h), having a κ3N,N′,N′′coordinated thioglycoside ligand.
Publications
Putrescine N ‐methyltransferase (PMT) catalyses S ‐adenosylmethionine (SAM)‐dependent methylation of putrescine in tropane alkaloid biosynthesis. PMT presumably evolved from the ubiquitous spermidine synthase (SPDS). SPDS protein structure suggested that only few amino acid exchanges in the active site were necessary to achieve PMT activity. Protein modelling, mutagenesis, and chimeric protein construction were applied to trace back evolution of PMT activity from SPDS. Ten amino acid exchanges in Datura stramonium SPDS dismissed the hypothesis of facile generation of PMT activity in existing SPDS proteins. Chimeric PMT and SPDS enzymes were active and indicated the necessity for a different putrescine binding site when PMT developed.