- Results as:
- Print view
- Endnote (RIS)
- BibTeX
- Table: CSV | HTML
Publications
Publications
Research Mission and Profile
Molecular Signal Processing
Bioorganic Chemistry
Biochemistry of Plant Interactions
Cell and Metabolic Biology
Independent Junior Research Groups
Program Center MetaCom
Publications
Good Scientific Practice
Research Funding
Networks and Collaborative Projects
Symposia and Colloquia
Alumni Research Groups
Publications
Both targeted and untargeted mass spectrometry-based metabolomics approaches are used to understand the metabolic processes taking place in various organisms, from prokaryotes, plants, fungi to animals and humans. Untargeted approaches allow to detect as many metabolites as possible at once, identify unexpected metabolic changes, and characterize novel metabolites in biological samples. However, the identification of metabolites and the biological interpretation of such large and complex datasets remain challenging. One approach to address these challenges is considering that metabolites are connected through informative relationships. Such relationships can be formalized as networks, where the nodes correspond to the metabolites or features (when there is no or only partial identification), and edges connect nodes if the corresponding metabolites are related. Several networks can be built from a single dataset (or a list of metabolites), where each network represents different relationships, such as statistical (correlated metabolites), biochemical (known or putative substrates and products of reactions), or chemical (structural similarities, ontological relations). Once these networks are built, they can subsequently be mined using algorithms from network (or graph) theory to gain insights into metabolism. For instance, we can connect metabolites based on prior knowledge on enzymatic reactions, then provide suggestions for potential metabolite identifications, or detect clusters of co-regulated metabolites. In this review, we first aim at settling a nomenclature and formalism to avoid confusion when referring to different networks used in the field of metabolomics. Then, we present the state of the art of network-based methods for mass spectrometry-based metabolomics data analysis, as well as future developments expected in this area. We cover the use of networks applications using biochemical reactions, mass spectrometry features, chemical structural similarities, and correlations between metabolites. We also describe the application of knowledge networks such as metabolic reaction networks. Finally, we discuss the possibility of combining different networks to analyze and interpret them simultaneously.
Publications
Liquid chromatography-mass spectrometry (LC-MS)-based untargeted metabolomics experiments have become increasingly popular because of the wide range of metabolites that can be analyzed and the possibility to measure novel compounds. LC-MS instrumentation and analysis conditions can differ substantially among laboratories and experiments, thus resulting in non-standardized datasets demanding customized annotation workflows. We present an ecosystem of R packages, centered around the MetaboCoreUtils, MetaboAnnotation and CompoundDb packages that together provide a modular infrastructure for the annotation of untargeted metabolomics data. Initial annotation can be performed based on MS1 properties such as m/z and retention times, followed by an MS2-based annotation in which experimental fragment spectra are compared against a reference library. Such reference databases can be created and managed with the CompoundDb package. The ecosystem supports data from a variety of formats, including, but not limited to, MSP, MGF, mzML, mzXML, netCDF as well as MassBank text files and SQL databases. Through its highly customizable functionality, the presented infrastructure allows to build reproducible annotation workflows tailored for and adapted to most untargeted LC-MS-based datasets. All core functionality, which supports base R data types, is exported, also facilitating its re-use in other R packages. Finally, all packages are thoroughly unit-tested and documented and are available on GitHub and through Bioconductor.