- Results as:
- Print view
- Endnote (RIS)
- BibTeX
- Table: CSV | HTML
Publications
Publications
Publications
Publications
Publications
Publications
Publications
Publications
Publications
Publications
Research Mission and Profile
Molecular Signal Processing
Bioorganic Chemistry
Biochemistry of Plant Interactions
Cell and Metabolic Biology
Independent Junior Research Groups
Program Center MetaCom
Publications
Good Scientific Practice
Research Funding
Networks and Collaborative Projects
Symposia and Colloquia
Alumni Research Groups
Publications
Three new glucosylceramides (GluCers) named malusides I–III (1–3) were isolated from apple (cultivars of Malus domestica) pomace (fruit material remaining after juice extraction). An unusual oxo/hydroxy group pattern within the sphingadienine (d18:2) type sphingoid base was observed. All compounds contained the same α-hydroxylated fatty acid (h16:0) and a β-D-glucose moiety. Their structures were assigned on the basis of one- and two-dimensional (1D and 2D) nuclear magnetic resonance (NMR) spectroscopic analyses and mass spectrometry (MS) measurements.
Publications
Aiming at providing an efficient and versatile method for the diversity‐oriented decoration and ligation of fullerenes, we report the first C60 derivatization strategy based on isocyanide‐multicomponent reactions (I‐MCRs). The approach comprises the use of Passerini and Ugi reactions for assembling pseudo‐peptidic scaffolds (i.e., N‐alkylated and depsipeptides, peptoids) on carboxylic acid‐functionalized fullerenes. The method showed wide substrate scope for the oxo and isocyanide components, albeit the Ugi reaction proved efficient only for aromatic amines. The approach was successfully employed for the ligation of oligopeptides and polyethyleneglycol chains (PEG) to C60, as well as for the construction of bis‐antennary as well as PEG‐tethered dimeric fullerenes. The quantum yields for the formation of 1O2 was remarkable for the selected compounds analyzed.
Publications
Roselle (Hibiscus sabdariffa) is a functional food with potential health benefits, consumed either as hot or cold beverage. To ensure quality control of its various products, accurate measurement of active metabolites is warranted. Herein, we propose a combination of ultra-high performance liquid chromatography-mass spectrometry (UHPLC-MS) and nuclear magnetic resonance (NMR) analytical platforms for the untargeted characterization of metabolites in two roselle cultivars, Aswan and Sudan-1. The analyses revealed 33 metabolites, including sugars, flavonoids, anthocyanins, phenolic and aliphatic organic acids. Their relative contents in cultivars were assessed via principle component analysis (PCA) and orthogonal projection to latent structures analysis (OPLS). Impact of the different extraction methods (decoction, infusion and maceration) was compared by quantitative 1H NMR spectroscopy, revealing cold maceration to be optimal for preserving anthocyanins, whereas infusion was more suited for recovering organic acids. The metabolite pattern revealed by the different extraction methods was found in good correlation for their ability to inhibit α-glucosidase enzyme.
Publications
BackgroundThe large and highly repetitive genomes of the cultivated species Hordeum vulgare (barley), Triticum aestivum (wheat), and Secale cereale (rye) belonging to the Triticeae tribe of grasses appear to be particularly rich in gene-like sequences including partial duplicates. Most of them have been classified as putative pseudogenes. In this study we employ transient and stable gene silencing- and over-expression systems in barley to study the function of HvARM1 (for H. vulgare Armadillo 1), a partial gene duplicate of the U-box/armadillo-repeat E3 ligase HvPUB15 (for H. vulgare Plant U-Box 15).ResultsThe partial ARM1 gene is derived from a gene-duplication event in a common ancestor of the Triticeae and contributes to quantitative host as well as nonhost resistance to the biotrophic powdery mildew fungus Blumeria graminis. In barley, allelic variants of HvARM1 but not of HvPUB15 are significantly associated with levels of powdery mildew infection. Both HvPUB15 and HvARM1 proteins interact in yeast and plant cells with the susceptibility-related, plastid-localized barley homologs of THF1 (for Thylakoid formation 1) and of ClpS1 (for Clp-protease adaptor S1) of Arabidopsis thaliana. A genome-wide scan for partial gene duplicates reveals further events in barley resulting in stress-regulated, potentially neo-functionalized, genes.ConclusionThe results suggest neo-functionalization of the partial gene copy HvARM1 increases resistance against powdery mildew infection. It further links plastid function with susceptibility to biotrophic pathogen attack. These findings shed new light on a novel mechanism to employ partial duplication of protein-protein interaction domains to facilitate the expansion of immune signaling networks.
Publications
Cell walls play critical roles in plants, regulating tissue mechanics, defining the extent and orientation of cell expansion, and providing a physical barrier against pathogen attack [1]. Cellulose microfibrils, which are synthesized by plasma membrane-localized cellulose synthase (CESA) complexes, are the primary load-bearing elements of plant cell walls [2]. Cell walls are dynamic structures that are regulated in part by cell wall integrity (CWI)-monitoring systems that feed back to modulate wall properties and the synthesis of new wall components [3]. Several receptor-like kinases have been implicated as sensors of CWI [3, 4, 5], including the FEI1/FEI2 receptor-like kinases [4]. Here, we characterize two genes encoding novel plant-specific plasma membrane proteins (SHOU4 and SHOU4L) that were identified in a suppressor screen of the cellulose-deficient fei1 fei2 mutant. shou4 shou4l double mutants display phenotypes consistent with elevated levels of cellulose, and elevated levels of non-crystalline cellulose are present in this mutant. Disruption of SHOU4 and SHOU4L increases the abundance of CESA proteins at the plasma membrane as a result of enhanced exocytosis. The SHOU4/4L N-terminal cytosolic domains directly interact with CESAs. Our results suggest that the SHOU4 proteins regulate cellulose synthesis in plants by influencing the trafficking of CESA complexes to the cell surface.
Publications
Bryophytes occur in almost all land ecosystems and contribute to global biogeochemical cycles, ecosystem functioning, and influence vegetation dynamics. As growth and biochemistry of bryophytes are strongly dependent on the season, we analyzed metabolic variation across seasons with regard to ecological characteristics and phylogeny. Using bioinformatics methods, we present an integrative and reproducible approach to connect ecology with biochemistry. Nine different bryophyte species were collected in three composite samples in four seasons. Untargeted liquid chromatography coupled with mass spectrometry (LC/MS) was performed to obtain metabolite profiles. Redundancy analysis, Pearson's correlation, Shannon diversity, and hierarchical clustering were used to determine relationships among species, seasons, ecological characteristics, and hierarchical clustering. Metabolite profiles of Marchantia polymorpha and Fissidens taxifolius which are species with ruderal life strategy (R‐selected) showed low seasonal variability, while the profiles of the pleurocarpous mosses and Grimmia pulvinata which have characteristics of a competitive strategy (C‐selected) were more variable. Polytrichum strictum and Plagiomnium undulatum had intermediary life strategies. Our study revealed strong species‐specific differences in metabolite profiles between the seasons. Life strategies, growth forms, and indicator values for light and soil were among the most important ecological predictors. We demonstrate that untargeted Eco‐Metabolomics provide useful biochemical insight that improves our understanding of fundamental ecological strategies.
Publications
The relatively new research discipline of Eco-Metabolomics is the application of metabolomics techniques to ecology with the aim to characterise biochemical interactions of organisms across different spatial and temporal scales. Metabolomics is an untargeted biochemical approach to measure many thousands of metabolites in different species, including plants and animals. Changes in metabolite concentrations can provide mechanistic evidence for biochemical processes that are relevant at ecological scales. These include physiological, phenotypic and morphological responses of plants and communities to environmental changes and also interactions with other organisms. Traditionally, research in biochemistry and ecology comes from two different directions and is performed at distinct spatiotemporal scales. Biochemical studies most often focus on intrinsic processes in individuals at physiological and cellular scales. Generally, they take a bottom-up approach scaling up cellular processes from spatiotemporally fine to coarser scales. Ecological studies usually focus on extrinsic processes acting upon organisms at population and community scales and typically study top-down and bottom-up processes in combination. Eco-Metabolomics is a transdisciplinary research discipline that links biochemistry and ecology and connects the distinct spatiotemporal scales. In this review, we focus on approaches to study chemical and biochemical interactions of plants at various ecological levels, mainly plant–organismal interactions, and discuss related examples from other domains. We present recent developments and highlight advancements in Eco-Metabolomics over the last decade from various angles. We further address the five key challenges: (1) complex experimental designs and large variation of metabolite profiles; (2) feature extraction; (3) metabolite identification; (4) statistical analyses; and (5) bioinformatics software tools and workflows. The presented solutions to these challenges will advance connecting the distinct spatiotemporal scales and bridging biochemistry and ecology
Publications
In Eco-Metabolomics interactions are studied of non-model organisms in their natural environment and relations are made between biochemistry and ecological function. Current challenges when processing such metabolomics data involve complex experiment designs which are often carried out in large field campaigns involving multiple study factors, peak detection parameter settings, the high variation of metabolite profiles and the analysis of non-model species with scarcely characterised metabolomes. Here, we present a dataset generated from 108 samples of nine bryophyte species obtained in four seasons using an untargeted liquid chromatography coupled with mass spectrometry acquisition method (LC/MS). Using this dataset we address the current challenges when processing Eco-Metabolomics data. Here, we also present a reproducible and reusable computational workflow implemented in Galaxy focusing on standard formats, data import, technical validation, feature detection, diversity analysis and multivariate statistics. We expect that the representative dataset and the reusable processing pipeline will facilitate future studies in the research field of Eco-Metabolomics.
Publications
Drought is one of the major stress factors affecting the growth and development of plants. In this context, drought-related losses of crop plant productivity impede sustainable agriculture all over the world. In general, plants respond to water deficits by multiple physiological and metabolic adaptations at the molecular, cellular, and organism levels. To understand the underlying mechanisms of drought tolerance, adequate stress models and arrays of reliable stress markers are required. Therefore, in this review we comprehensively address currently available models of drought stress, based on culturing plants in soil, hydroponically, or in agar culture, and critically discuss advantages and limitations of each design. We also address the methodology of drought stress characterization and discuss it in the context of real experimental approaches. Further, we highlight the trends of methodological developments in drought stress research, i.e., complementing conventional tests with quantification of phytohormones and reactive oxygen species (ROS), measuring antioxidant enzyme activities, and comprehensively profiling transcriptome, proteome, and metabolome.
Publications
Land plants evolved from charophytic algae, among which Charophyceae possess the most complex body plans. We present the genome of Chara braunii; comparison of the genome to those of land plants identified evolutionary novelties for plant terrestrialization and land plant heritage genes. C. braunii employs unique xylan synthases for cell wall biosynthesis, a phragmoplast (cell separation) mechanism similar to that of land plants, and many phytohormones. C. braunii plastids are controlled via land-plant-like retrograde signaling, and transcriptional regulation is more elaborate than in other algae. The morphological complexity of this organism may result from expanded gene families, with three cases of particular note: genes effecting tolerance to reactive oxygen species (ROS), LysM receptor-like kinases, and transcription factors (TFs). Transcriptomic analysis of sexual reproductive structures reveals intricate control by TFs, activity of the ROS gene network, and the ancestral use of plant-like storage and stress protection proteins in the zygote.