- Results as:
- Print view
- Endnote (RIS)
- BibTeX
- Table: CSV | HTML
Preprints
Preprints
Research Mission and Profile
Molecular Signal Processing
Bioorganic Chemistry
Biochemistry of Plant Interactions
Cell and Metabolic Biology
Independent Junior Research Groups
Program Center MetaCom
Publications
Good Scientific Practice
Research Funding
Networks and Collaborative Projects
Symposia and Colloquia
Alumni Research Groups
Preprints
Background Metabolomics is the comprehensive study of a multitude of small molecules to gain insight into an organism’s metabolism. The research field is dynamic and expanding with applications across biomedical, biotechnological and many other applied biological domains. Its computationally-intensive nature has driven requirements for open data formats, data repositories and data analysis tools. However, the rapid progress has resulted in a mosaic of independent – and sometimes incompatible – analysis methods that are difficult to connect into a useful and complete data analysis solution.Findings The PhenoMeNal (Phenome and Metabolome aNalysis) e-infrastructure provides a complete, workflow-oriented, interoperable metabolomics data analysis solution for a modern infrastructure-as-a-service (IaaS) cloud platform. PhenoMeNal seamlessly integrates a wide array of existing open source tools which are tested and packaged as Docker containers through the project’s continuous integration process and deployed based on a kubernetes orchestration framework. It also provides a number of standardized, automated and published analysis workflows in the user interfaces Galaxy, Jupyter, Luigi and Pachyderm.Conclusions PhenoMeNal constitutes a keystone solution in cloud infrastructures available for metabolomics. It provides scientists with a ready-to-use, workflow-driven, reproducible and shareable data analysis platform harmonizing the software installation and configuration through user-friendly web interfaces. The deployed cloud environments can be dynamically scaled to enable large-scale analyses which are interfaced through standard data formats, versioned, and have been tested for reproducibility and interoperability. The flexible implementation of PhenoMeNal allows easy adaptation of the infrastructure to other application areas and ‘omics research domains.
Preprints
Making reproducible, auditable and scalable data-processing analysis workflows is an important challenge in the field of bioinformatics. Recently, software containers and cloud computing introduced a novel solution to address these challenges. They simplify software installation, management and reproducibility by packaging tools and their dependencies. In this work we implemented a cloud provider agnostic and scalable container orchestration setup for the popular Galaxy workflow environment. This solution enables Galaxy to run on and offload jobs to most cloud providers (e.g. Amazon Web Services, Google Cloud or OpenStack, among others) through the Kubernetes container orchestrator. Availability: All code has been contributed to the Galaxy Project and is available (since Galaxy 17.05) at https://github.com/galaxyproject/ in the galaxy and galaxy-kubernetes repositories. https://public.phenomenal-h2020.eu/ is an example deployment.