- Results as:
- Print view
- Endnote (RIS)
- BibTeX
- Table: CSV | HTML
Publications
Publications
Publications
Publications
Publications
Publications
Publications
Publications
Publications
Publications
Research Mission and Profile
Molecular Signal Processing
Bioorganic Chemistry
Biochemistry of Plant Interactions
Cell and Metabolic Biology
Independent Junior Research Groups
Program Center MetaCom
Publications
Good Scientific Practice
Research Funding
Networks and Collaborative Projects
Symposia and Colloquia
Alumni Research Groups
Publications
Phytochemical investigations of Aloe sabaea afforded a new chlorinated amide, N-4′-chlorobutylbutyramide, and the toxic piperidine alkaloids coniine, γ-coniceine and the quarternary N,N-dimethylconiine. This is the first report of the occurrence of a chlorinated compound in the Aloeaceae family.
Publications
Neither the molecular mechanism by which plant microtubules nucleate in the cytoplasm nor the organization of plant mitotic spindles, which lack centrosomes, is well understood. Here, using immunolocalization and cell fractionation techniques, we provide evidence that γ-tubulin, a universal component of microtubule organizing centers, is present in both the cytoplasm and the nucleus of plant cells. The amount of γ-tubulin in nuclei increased during the G2 phase, when cells are synchronized or sorted for particular phases of the cell cycle. γ-Tubulin appeared on prekinetochores before preprophase arrest caused by inhibition of the cyclin-dependent kinase and before prekinetochore labeling of the mitosis-specific phosphoepitope MPM2. The association of nuclear γ-tubulin with chromatin displayed moderately strong affinity, as shown by its release after DNase treatment and by using extraction experiments. Subcellular compartmentalization of γ-tubulin might be an important factor in the organization of plant-specific microtubule arrays and acentriolar mitotic spindles.
Publications
From the acetone extract of the North American toadstool Lepiota americana 2-aminophenoxazin-3-one (1) and a novel amino-1,4-benzoquinone derivative, lepiotaquinone (2), were isolated. The structure of 2 was confirmed by its preparation from 2-aminophenol and amino-1,4-benzoquinone.
Publications
During growth under conditions of phosphate limitation, suspension-cultured cells of tomato (Lycopersicon esculentum Mill.) secrete phosphodiesterase activity in a similar fashion to phosphate starvation-inducible ribonuclease (RNase LE), a cyclizing endoribonuclease that generates 2′:3′-cyclic nucleoside monophosphates (NMP) as its major monomeric products (T. Nürnberger, S. Abel, W. Jost, K. Glund [1990] Plant Physiol 92: 970–976). Tomato extracellular phosphodiesterase was purified to homogeneity from the spent culture medium of phosphate-starved cells and was characterized as a cyclic nucleotide phosphodiesterase. The purified enzyme has a molecular mass of 70 kD, a pH optimum of 6.2, and an isoelectric point of 8.1. The phosphodiesterase preparation is free of any detectable deoxyribonuclease, ribonuclease, and nucleotidase activity. Tomato extracellular phosphodiesterase is insensitive to EDTA and hydrolyzes with no apparent base specificity 2′:3′-cyclic NMP to 3′-NMP and the 3′:5′-cyclic isomers to a mixture of 3′-NMP and 5′-NMP. Specific activities of the enzyme are 2-fold higher for 2′:3′-cyclic NMP than for 3′:5′-cyclic isomers. Analysis of monomeric products of sequential RNA hydrolysis with purified RNase LE, purified extracellular phosphodiesterase, and cleared −Pi culture medium as a source of 3′-nucleotidase activity indicates that cyclic nucleotide phosphodiesterase functions as an accessory ribonucleolytic activity that effectively hydrolyzes primary products of RNase LE to substrates for phosphate-starvation-inducible phosphomonoesterases. Biosynthetical labeling of cyclic nucleotide phopshodiesterase upon phosphate starvation suggests de novo synthesis and secretion of a set of nucleolytic enzymes for scavenging phosphate from extracellular RNA substrates.
Publications
Allene oxide cyclase (EC 5.3.99.6) catalyzes the stereospecific cyclization of an unstable allene oxide to (9S,13S)-12-oxo-(10,15Z)-phytodienoic acid, the ultimate precursor of jasmonic acid. This dimeric enzyme has previously been purified, and two almost identical N-terminal peptides were found, suggesting allene oxide cyclase to be a homodimeric protein. Furthermore, the native protein was N-terminally processed. Using degenerate primers, a polymerase chain reaction fragment could be generated from tomato, which was further used to isolate a full-length cDNA clone of 1 kilobase pair coding for a protein of 245 amino acids with a molecular mass of 26 kDa. Whereas expression of the whole coding region failed to detect allene oxide cyclase activity, a 5′-truncated protein showed high activity, suggesting that additional amino acids impair the enzymatic function. Steric analysis of the 12-oxophytodienoic acid formed by the recombinant enzyme revealed exclusive (>99%) formation of the 9S,13Senantiomer. Exclusive formation of this enantiomer was also found in wounded tomato leaves. Southern analysis and genetic mapping revealed the existence of a single gene for allene oxide cyclase located on chromosome 2 of tomato. Inspection of the N terminus revealed the presence of a chloroplastic transit peptide, and the location of allene oxide cyclase protein in that compartment could be shown by immunohistochemical methods. Concomitant with the jasmonate levels, the accumulation of allene oxide cyclase mRNA was transiently induced after wounding of tomato leaves.
Publications
Using synthetic inhibitors, it has been shown that the ectopeptidase dipeptidyl peptidase IV (DP IV) (CD26) plays an important role in the activation and proliferation of T lymphocytes. The human immunodeficiency virus-1 Tat protein, as well as the N-terminal nonapeptide Tat(1–9) and other peptides containing the N-terminal sequence XXP, also inhibit DP IV and therefore T cell activation. Studying the effect of amino acid exchanges in the N-terminal three positions of the Tat(1–9) sequence, we found that tryptophan in position 2 strongly improves DP IV inhibition. NMR spectroscopy and molecular modeling show that the effect of Trp2-Tat(1–9) could not be explained by significant alterations in the backbone structure and suggest that tryptophan enters favorable interactions with DP IV. Data base searches revealed the thromboxane A2 receptor (TXA2-R) as a membrane protein extracellularly exposing N-terminal MWP. TXA2-R is expressed within the immune system on antigen-presenting cells, namely monocytes. The N-terminal nonapeptide of TXA2-R, TXA2-R(1–9), inhibits DP IV and DNA synthesis and IL-2 production of tetanus toxoid-stimulated peripheral blood mononuclear cells. Moreover, TXA2-R(1–9) induces the production of the immunosuppressive cytokine transforming growth factor-β1. These data suggest that the N-terminal part of TXA2-R is an endogenous inhibitory ligand of DP IV and may modulate T cell activation via DP IV/CD26 inhibition.
Publications
Natural products cover a diversity space not yet available from synthetic libraries, with an unrivalled success rate as drug leads. The combinatorial synthesis of non-oligomeric natural-product-based libraries, however, is still limited to few examples because access to easily modified units strongly depends on the availability of a core structure either from a natural source, or through a suitable synthetic route. Only a few resourceful groups have managed the latter approach for more demanding multifunctional natural drug leads, such as epothilones.
Publications
In barley leaves 13-lipoxygenases are induced by jasmonates. This leads to induction of lipid peroxidation. Here we show by in vitro studies that these processes may further lead to autoxidative formation of (2E)-4-hydroxy-2-hexenal from (3Z)-hexenal.
Publications
Chemische Signale wurden bereits im 19.Jahrhundert als Regulatoren von Wachstum und Entwicklung der Pflanzen postuliert.In den letzten 70 Jahren wurde die Wirkungsweise der klassischen Pflanzenhormone wie der Auxine, Gibberelline, Cytokinine, Ethylen und Abscisinsäure aufgeklärt. Doch erst im letzten Jahrzehnt entdeckte man die Bedeutung der Brassinosteroide, der Peptidhormone und der Jasmonate.
Publications
Plants and certain bacteria use a non‐mevalonate alternative route for the biosynthesis of many isoprenoids, including carotenoids. This route has been discovered only recently and has been designated the deoxyxylulose phosphate pathway or methylerythritol phosphate (MEP) pathway. We report here that colonisation of roots from wheat, maize, rice and barley by the arbuscular mycorrhizal fungal symbiont Glomus intraradices involves strong induction of transcript levels of two of the pivotal enzymes of the MEP pathway, 1‐deoxy‐D‐xylulose 5‐phosphate synthase (DXS) and 1‐deoxy‐D‐xylulose 5‐phosphate reductoisomerase (DXR). This induction is temporarily and spatially correlated with specific and concomitant accumulation of two classes of apocarotenoids, namely glycosylated C13 cyclohexenone derivatives and mycorradicin (C14) conjugates, the latter being a major component of the long‐known ‘yellow pigment’. A total of six cyclohexenone derivatives were characterised from mycorrhizal wheat and maize roots. Furthermore, the acyclic structure of mycorradicin described previously only from maize has been identified from mycorrhizal wheat roots after alkaline treatment of an ‘apocarotenoid complex’ of yellow root constituents. We propose a hypothetical scheme for biogenesis of both types of apocarotenoids from a common oxocarotenoid (xanthophyll) precursor. This is the first report demonstrating (i) that the plastidic MEP pathway is active in plant roots and (ii) that it can be induced by a fungus.