- Results as:
- Print view
- Endnote (RIS)
- BibTeX
- Table: CSV | HTML
Publications
Publications
Publications
Publications
Research Mission and Profile
Molecular Signal Processing
Bioorganic Chemistry
Biochemistry of Plant Interactions
Cell and Metabolic Biology
Independent Junior Research Groups
Program Center MetaCom
Publications
Good Scientific Practice
Research Funding
Networks and Collaborative Projects
Symposia and Colloquia
Alumni Research Groups
Publications
Plants and certain bacteria use a non‐mevalonate alternative route for the biosynthesis of many isoprenoids, including carotenoids. This route has been discovered only recently and has been designated the deoxyxylulose phosphate pathway or methylerythritol phosphate (MEP) pathway. We report here that colonisation of roots from wheat, maize, rice and barley by the arbuscular mycorrhizal fungal symbiont Glomus intraradices involves strong induction of transcript levels of two of the pivotal enzymes of the MEP pathway, 1‐deoxy‐D‐xylulose 5‐phosphate synthase (DXS) and 1‐deoxy‐D‐xylulose 5‐phosphate reductoisomerase (DXR). This induction is temporarily and spatially correlated with specific and concomitant accumulation of two classes of apocarotenoids, namely glycosylated C13 cyclohexenone derivatives and mycorradicin (C14) conjugates, the latter being a major component of the long‐known ‘yellow pigment’. A total of six cyclohexenone derivatives were characterised from mycorrhizal wheat and maize roots. Furthermore, the acyclic structure of mycorradicin described previously only from maize has been identified from mycorrhizal wheat roots after alkaline treatment of an ‘apocarotenoid complex’ of yellow root constituents. We propose a hypothetical scheme for biogenesis of both types of apocarotenoids from a common oxocarotenoid (xanthophyll) precursor. This is the first report demonstrating (i) that the plastidic MEP pathway is active in plant roots and (ii) that it can be induced by a fungus.
Publications
Allene oxide synthase (AOS) is the first enzyme in the lipoxygenase (LOX) pathway which leads to formation of jasmonic acid (JA). Two full‐length cDNAs of AOS designated as AOS1 and AOS2, respectively, were isolated from barley (H. vulgare cv. Salome) leaves, which represent the first AOS clones from a monocotyledonous species. For AOS1, the open reading frame encompasses 1461 bp encoding a polypeptide of 487 amino acids with calculated molecular mass of 53.4 kDa and an isoelectric point of 9.3, whereas the corresponding data of AOS2 are 1443 bp, 480 amino acids, 52.7 kDa and 7.9. Southern blot analysis revealed at least two genes. Despite the lack of a putative chloroplast signal peptide in both sequences, the protein co‐purified with chloroplasts and was localized within chloroplasts by immunocytochemical analysis. The barley AOSs, expressed in bacteria as active enzymes, catalyze the dehydration of LOX‐derived 9‐ as well as 13‐hydroperoxides of polyenoic fatty acids to the unstable allene oxides. In leaves, AOS mRNA accumulated upon treatment with jasmonates, octadecanoids and metabolizable carbohydrates, but not upon floating on abscisic acid, NaCl, Na‐salicylate or infection with powdery mildew. In developing seedlings, AOS mRNA strongly accumulated in the scutellar nodule, but less in the leaf base. Both tissues exhibited elevated JA levels. In situ hybridizations revealed the preferential occurrence of AOS mRNA in parenchymatic cells surrounding the vascular bundles of the scutellar nodule and in the young convoluted leaves as well as within the first internode. The properties of both barley AOSs, their up‐regulation of their mRNAs and their tissue specific expression suggest a role during seedling development and jasmonate biosynthesis.
Publications
The molecular characterization of CYP72A1 from Catharanthus roseus (Madagascar periwinkle) was described nearly a decade ago, but the enzyme function remained unknown. We now show by in situ hybridization and immunohistochemistry that the expression in immature leaves is epidermis‐specific. It thus follows the pattern previously established for early enzymes in the pathway to indole alkaloids, suggesting that CYP72A1 may be involved in their biosynthesis. The early reactions in that pathway, i.e. from geraniol to strictosidine, contain several candidates for P450 activities. We investigated in this work two reactions, the conversion of 7‐deoxyloganin to loganin (deoxyloganin 7‐hydroxylase, DL7H) and the oxidative ring cleavage converting loganin into secologanin (secologanin synthase, SLS). The action of DL7H has not been demonstrated in vitro previously, and SLS has only recently been identified as P450 activity in one other plant. We show for the first time that both enzyme activities are present in microsomes from C . roseus cell cultures. We then tested whether CYP72A1 expressed in E. coli as a translational fusion with the C . roseus P450 reductase (P450Red) has one or both of these activities. The results show that CYP72A1 converts loganin into secologanin.
Publications
A crucial step in the biosynthesis of jasmonic acid (JA) is the formation of its correct stereoisomeric precursor, cis (+)12‐oxophytodienoic acid (OPDA). This step is catalysed by allene oxide cyclase (AOC), which has been recently cloned from tomato . In stems, young leaves and young flowers, AOC mRNA accumulates to a low level , contrasting with a high accumulation in flower buds, flower stalks and roots. The high levels of AOC mRNA and AOC protein in distinct flower organs correlate with high AOC activity, and with elevated levels of JA, OPDA and JA isoleucine conjugate. These compounds accumulate in flowers to levels of about 20 nmol g−1 fresh weight, which is two orders of magnitude higher than in leaves. In pistils, the level of OPDA is much higher than that of JA, whereas in flower stalks, the level of JA exceeds that of OPDA. In other flower tissues, the ratios among JA, OPDA and JA isoleucine conjugate differ remarkably, suggesting a tissue‐specific oxylipin signature. Immunocytochemical analysis revealed the specific occurrence of the AOC protein in ovules, the transmission tissue of the style and in vascular bundles of receptacles, flower stalks, stems, petioles and roots. Based on the tissue‐specific AOC expression and formation of JA, OPDA and JA amino acid conjugates, a possible role for these compounds in flower development is discussed in terms of their effect on sink–source relationships and plant defence reactions. Furthermore, the AOC expression in vascular bundles might play a role in the systemin‐mediated wound response of tomato.