- Results as:
- Print view
- Endnote (RIS)
- BibTeX
- Table: CSV | HTML
Publications
Books and chapters
Research Mission and Profile
Molecular Signal Processing
Bioorganic Chemistry
Biochemistry of Plant Interactions
Cell and Metabolic Biology
Independent Junior Research Groups
Program Center MetaCom
Publications
Good Scientific Practice
Research Funding
Networks and Collaborative Projects
Symposia and Colloquia
Alumni Research Groups
Publications
Using synthetic inhibitors, it has been shown that the ectopeptidase dipeptidyl peptidase IV (DP IV) (CD26) plays an important role in the activation and proliferation of T lymphocytes. The human immunodeficiency virus-1 Tat protein, as well as the N-terminal nonapeptide Tat(1–9) and other peptides containing the N-terminal sequence XXP, also inhibit DP IV and therefore T cell activation. Studying the effect of amino acid exchanges in the N-terminal three positions of the Tat(1–9) sequence, we found that tryptophan in position 2 strongly improves DP IV inhibition. NMR spectroscopy and molecular modeling show that the effect of Trp2-Tat(1–9) could not be explained by significant alterations in the backbone structure and suggest that tryptophan enters favorable interactions with DP IV. Data base searches revealed the thromboxane A2 receptor (TXA2-R) as a membrane protein extracellularly exposing N-terminal MWP. TXA2-R is expressed within the immune system on antigen-presenting cells, namely monocytes. The N-terminal nonapeptide of TXA2-R, TXA2-R(1–9), inhibits DP IV and DNA synthesis and IL-2 production of tetanus toxoid-stimulated peripheral blood mononuclear cells. Moreover, TXA2-R(1–9) induces the production of the immunosuppressive cytokine transforming growth factor-β1. These data suggest that the N-terminal part of TXA2-R is an endogenous inhibitory ligand of DP IV and may modulate T cell activation via DP IV/CD26 inhibition.
Books and chapters
Compared to the N-terminal nonapeptide of the HIV-1 Tat protein as inhibitor of activity of DP IV which is supposed to mediate the immunosuppressive effects of HIV-1 Tat, the Ile5 and Leu6 analogues showed strongly reduced inhibitory activity. Interestingly, replacement of Asp2 with Gly or Lys led to compounds with considerably enhanced inhibition. Therefore, we have applied 1H NMR spectroscopy and restrained molecular dynamics calculations to elucidate the molecular conformation of a series of Tat nonapeptides. Conformational backbone differences of these peptides as well as the nature and the arrangement of the side chains per se at significant positions preventing effective binding to DP IV might explain their different inhibitory activity on DP IV.