- Results as:
- Print view
- Endnote (RIS)
- BibTeX
- Table: CSV | HTML
Publications
Publications
Publications
Publications
Publications
Publications
Publications
Publications
Publications
Research Mission and Profile
Molecular Signal Processing
Bioorganic Chemistry
Biochemistry of Plant Interactions
Cell and Metabolic Biology
Independent Junior Research Groups
Program Center MetaCom
Publications
Good Scientific Practice
Research Funding
Networks and Collaborative Projects
Symposia and Colloquia
Alumni Research Groups
Publications
Exogenously applied 3-dehydro-24-epi-teasterone is transformed by cell suspension cultures of Lycopersicon esculentum to give the metabolites 24-epi-teasterone and 24-epi-typhasterol in about equal but low quantities. The major portion of 24-epi-teasterone was found as carbohydrate conjugates while 24-epi-typhasterol occurred in free form, indicating significant influence of glycosidation on the equilibrium between both compounds. The importance of these conjugation processes for the regulation of the brassinosteroid biosynthesis is discussed.In tomato cell cultures, 3-dehydro-24-epi-teasterone is transformed both to 24-epi-teasterone and 24-epi-typhasterol. The ratio between both epimers is regulated by glycosidation in 3β-position
Publications
The platina‐β‐diketone [Pt2{(COMe)2H}2(μ‐Cl)2] (1 ) reacts with aliphatic amines [n BuNH2, (i Pr)2NH, NEt3], N‐methylaniline, and N ,N‐dimethylaniline, as well as with strong bases, such as a proton sponge or [NMe4]OH, in an equimolar ratio to give the anionic platina‐β‐diketonato complexes of platina‐β‐diketones [BH]2[{Cl2Pt(μ‐COMe)2Pt[(COMe)2H]}2] (3 ) {B = n BuNH2 (3a ), (i Pr)2NH (3b ), NEt3 (3c ), PhNHMe (3d ), PhNMe2 (3e ), C10H6(NMe2)2 [1,8‐bis(dimethylamino)naphthalene] (3f ) and [NMe4]2[{Cl2Pt(μ‐COMe)2Pt[(COMe)2H]}2] (3g )}. All complexes were characterized by microanalysis, and by 1H‐NMR and IR spectroscopy. X‐ray structure analyses reveal that in the solid state the complexes 3a · 0.5 CH2Cl2 and 3g · 2 CH2Cl2 consist of tetranuclear dianions with zigzag Pt4 chains [Pt–Pt–Pt angle: 122.92(3)° (3a ), 119.30(6)° (3g )]. The central Pt···Pt distances [3a : 3.171(1) Å, 3g : 3.176(1) Å] give evidence for closed shell d8‐d8 interactions. Thus, these bis(acyl)‐bridged complexes can be regarded as organometallic analogues of platinum blue complexes.
Publications
Lipoxygenases (LOXs) and other LOX pathway enzymes are potentially able to form a large set of compounds being of commercial interest. Among them are conjugated dienic acids, jasmonates, and volatile aldehydes. Additionally, fatty acid hydroperoxides, formed by LOX, can serve as precursors for further transformation by either enzymes of the so‐called LOX pathway or by chemical reactions. In the case of linoleic acid more than one hundred products generated from its LOX‐derived fatty acid hydroperoxides have been described. Many of these products exhibit biological activity, suggesting a significant biological function of LOXs. This will be described for two different 13‐LOXs. (I) In various oilseeds we found that specific 13‐LOXs are localized at the lipid body membrane. They are capable of oxygenating esterified polyenoic fatty acids, such as triacylglycerols and phospho‐lipids. In addition, they form with arachidonic acid as substrate preferentially either 8‐ or 11‐hydroperoxy eicosatetraenoic acid, which is a very unusual positional specificity for plant LOXs. (II) From barley leaves we isolated another linoleate 13‐LOX form, which is localized within chloroplasts and is induced by jasmonic acid methyl ester. It is suggested, that this LOX form is capable of oxygenating linolenic acid residues of galactolipids. Examples will be presented for barley leaves of oxygenated derivatives of linolenic acid and compounds resulting from the hydroperoxide lyase‐branch of the LOX pathway.
Publications
Human cathepsins K and S are recently identified proteins with high primary sequence homology to members of papain superfamily, including cathepsins B, L, H and papain. Models of the tertiary structures of cathepsins K and S and their complexes with a specific substrate and inhibitor were constructed and compared with the recently determined X-ray structure of cathepsin K. A major problem in the determination of the three-dimensional structure of proteins concerns the quality of the structural models obtained from the interpretation of experimental data. The framework of the tertiary structures of cathepsins K and S consisted of structurally conserved regions from the tertiary structure of the papain superfamily and the variable regions were constructed with fragments of other proteins from the protein data base. Based on docking studies the non-bonded interaction energies of ligands with the cathepsins were estimated. These energies correlate with experimentally determined substrate and inhibitory potency.
Publications
The human immunodeficiency virus 1 Tat protein suppresses antigen-, anti-CD3-and mitogen-induced activation of human T cells when added to T cell cultures. This activity is important for the development of AIDS because lymphocytes from HIV-infected individuals exhibit a similar antigen-specific dysfunction. Moreover, Tat was found to interact with dipeptidyl peptidase IV (DP IV). To find out the amino acid sequence important for the inhibition of the DP IV enzymatic activity we investigated N-terminal Tat(1–9) peptide analogues with amino acid substitutions in different positions. Interestingly, the exchange of Pro6 with Leu and Asp5 with Ile strongly diminished the DP IV inhibition by Tat(1–9). Based on data derived from one-and two-dimensional 1H NMR investigations the solution conformations of the three nonapeptides in water were determined by means of molecular dynamics simulations. These conformations were used for studies of the docking behavior of the peptides into a model of the active site of DP IV. The results suggest that several attractive interactions between the native Tat(1–9) and DP IV lead to a stable complex and that the reduced affinity of both L6-Tat(1–9) and I5-Tat(1–9) derivatives might be caused by conformational alterations in comparison to the parent peptide.
Publications
The repertoire of secondary metabolism (involving the production of compounds not essential for growth) in the plant kingdom is enormous, but the genetic and functional basis for this diversity is hard to analyse as many of the biosynthetic enzymes are unknown. We have now identified a key enzyme in the ornamental plant Gerbera hybrida (Asteraceae) that participates in the biosynthesis of compounds that contribute to insect and pathogen resistance. Plants transformed with an antisense construct of gchs2, a complementary DNA encoding a previously unknown function1,2, completely lack the pyrone derivatives gerberin and parasorboside. The recombinant plant protein catalyses the principal reaction in the biosynthesis of these derivatives: GCHS2 is a polyketide synthase that uses acetyl-CoA and two condensation reactions with malonyl-CoA to form the pyrone backbone of thenatural products. The enzyme also accepts benzoyl-CoA to synthesize the backbone of substances that have become of interest as inhibitors of the HIV-1 protease3,4,5. GCHS2 is related to chalcone synthase (CHS) and its properties define a new class of function in the protein superfamily. It appears that CHS-related enzymes are involved in the biosynthesis of a much larger range of plant products than was previously realized.
Publications
Nonessential metal ions such as cadmium are most likely transported across plant membranes via transporters for essential cations. To identify possible pathways for Cd2+ transport we tested putative plant cation transporters for Cd2+ uptake activity by expressing cDNAs in Saccharomyces cerevisiae and found that expression of one clone, LCT1, renders the growth of yeast more sensitive to cadmium. Ion flux assays showed that Cd2+ sensitivity is correlated with an increase in Cd2+ uptake. LCT1-dependent Cd2+ uptake is saturable, lies in the high-affinity range (apparent KM for Cd2+ = 33 μM) and is sensitive to block by La3+ and Ca2+. Growth assays demonstrated a sensitivity of LCT1-expressing yeast cells to extracellular millimolar Ca2+ concentrations. LCT1-dependent increase in Ca2+ uptake correlated with the observed phenotype. Furthermore, LCT1 complements a yeast disruption mutant in the MID1 gene, a non-LCT1-homologous yeast gene encoding a membrane Ca2+ influx system required for recovery from the mating response. We conclude that LCT1 mediates the uptake of Ca2+ and Cd2+ in yeast and may therefore represent a first plant cDNA encoding a plant Ca2+ uptake or an organellar Ca2+ transport pathway in plants and may contribute to transport of the toxic metal Cd2+ across plant membranes.
Publications
From a cDNA library generated from mRNA of white leaf tissues of the ribosome‐deficient mutant ‘albostrians' of barley (Hordeum vulgare cv. Haisa) a cDNA was isolated carrying 54.2% identity to a recently published cDNA which codes for the diadenosine‐5′,5′′′‐P1,P4‐tetraphosphate (Ap4A) hydrolase of Lupinus angustifolius (Maksel et al. (1998) Biochem. J. 329, 313–319), and 69% identity to four partial peptide sequences of Ap4A hydrolase of tomato. Overexpression in Escherichia coli revealed a protein of about 19 kDa, which exhibited Ap4A hydrolase activity and cross‐reactivity with an antibody raised against a purified tomato Ap4A hydrolase (Feussner et al. (1996) Z. Naturforsch. 51c, 477–486). Expression studies showed an mRNA accumulation in all organs of a barley seedling. Possible functions of Ap4A hydrolase in plants will be discussed.
Publications
The biosynthesis of complex alkaloids in plants involves enzymes that, due to high substrate specificity, appear to have evolved solely for a role in secondary metabolism. At least one class of these enzymes, the oxidoreductases, catalyze transformations that are in some cases difficult to chemically mimick with an equivalent stereo‐ or regiospecificity and yield. Oxidoreductases are frequently catalyzing reactions that result in the formation of parent ring systems, thereby determining the class of alkaloid that a plant will produce. The oxidoreductases of alkaloid formation are a potential target for the biotechnological exploitation of medicinal plants in that they could be used for biomimetic syntheses of alkaloids. Analyzing the molecular genetics of alkaloid biosynthetic oxidations is requisite to eventual commercial application of these enzymes. To this end, a wealth of knowledge has been gained on the biochemistry of select monoterpenoid indole and isoquinoline biosynthetic pathways, and in recent years this has been complemented by molecular genetic analyses. As the nucleotide sequences of the oxidases of alkaloid synthesis become known, consensus sequences specific to select classes of enzymes can be identified. These consensus sequences will potentially facilitate the direct cloning of alkaloid biosynthetic genes without the need to purify the native enzyme for partial amino acid sequence determination or for antibody production prior to cDNA isolation. The current state of our knowledge of the biochemistry and molecular genetics of oxidases involved in alkaloid biosynthesis is reviewed herein.