- Results as:
- Print view
- Endnote (RIS)
- BibTeX
- Table: CSV | HTML
Publications
Publications
Publications
Publications
Publications
Publications
Publications
Publications
Publications
Publications
Research Mission and Profile
Molecular Signal Processing
Bioorganic Chemistry
Biochemistry of Plant Interactions
Cell and Metabolic Biology
Independent Junior Research Groups
Program Center MetaCom
Publications
Good Scientific Practice
Research Funding
Networks and Collaborative Projects
Symposia and Colloquia
Alumni Research Groups
Publications
Auxin is a pivotal plant hormone that controls many aspects of plant growth and development. Perceived by a small family of F-box proteins including transport inhibitor response 1 (TIR1), auxin regulates gene expression by promoting SCF ubiquitin-ligase-catalysed degradation of the Aux/IAA transcription repressors, but how the TIR1 F-box protein senses and becomes activated by auxin remains unclear. Here we present the crystal structures of the Arabidopsis TIR1–ASK1 complex, free and in complexes with three different auxin compounds and an Aux/IAA substrate peptide. These structures show that the leucine-rich repeat domain of TIR1 contains an unexpected inositol hexakisphosphate co-factor and recognizes auxin and the Aux/IAA polypeptide substrate through a single surface pocket. Anchored to the base of the TIR1 pocket, auxin binds to a partially promiscuous site, which can also accommodate various auxin analogues. Docked on top of auxin, the Aux/IAA substrate peptide occupies the rest of the TIR1 pocket and completely encloses the hormone-binding site. By filling in a hydrophobic cavity at the protein interface, auxin enhances the TIR1–substrate interactions by acting as a ‘molecular glue’. Our results establish the first structural model of a plant hormone receptor.
Publications
The complex pigment pattern of fly agaric (Amanita muscaria) cap skins has been studied by LC-DAD and mass spectrometry. Among the betaxanthins the corresponding derivatives of serine, threonine, ethanolamine, alanine, Dopa, phenylalanine and tryptophan are reported for the first time to contribute to the pigment pattern of fly agarics. Betalamic acid, the chromophoric precursor of betaxanthins and betacyanins, muscaflavin and seco-dopas were also detected. Furthermore, the red-purple muscapurpurin and the red muscarubrin were tentatively assigned while further six betacyanin-like components could not be structurally allocated. Stability studies indicated a high susceptibility of pigment extracts to degradation which led to rapid colour loss thus rendering a complete characterization of betacyaninlike compounds impossible at present. Taking into account these difficulties the presented results may be a starting point for a comprehensive characterization of the pigment composition of fly agarics.
Publications
0
Publications
Plumbago indica L. contains naphthoquinones that are derived from six acetate units. To characterize the enzyme catalyzing the first step in the biosynthesis of these metabolites, a cDNA encoding a type III polyketide synthase (PKS) was isolated from roots of P. indica. The translated polypeptide shared 47–60% identical residues with PKSs from other plant species. Recombinant P. indica PKS expressed in Escherichia coli accepted acetyl‐CoA as starter and carried out five decarboxylative condensations with malonyl coenzyme A (‐CoA). The resulting hexaketide was not folded into a naphthalene derivative. Instead, an α‐pyrone, 6‐(2′,4′‐dihydroxy‐6′‐methylphenyl)‐4‐hydroxy‐2‐pyrone, was produced. In addition, formation of α‐pyrones with linear keto side chains derived from three to six acetate units was observed. As phenylpyrones could not be detected in P. indica roots, we propose that the novel PKS is involved in the biosynthesis of naphthoquinones, and additional cofactors are probably required for the biosynthesis of these secondary metabolites in vivo.
Publications
E3 ubiquitin ligases (E3s) target proteins for degradation by the 26S proteasome. In SKP1/CDC53/F-box protein–type E3s, substrate specificity is conferred by the interchangeable F-box protein subunit. The vast majority of the 694 F-box proteins encoded by the Arabidopsis thaliana genome remain to be understood. We characterize the VIER F-BOX PROTEINE (VFB; German for FOUR F-BOX PROTEINS) genes from Arabidopsis that belong to subfamily C of the Arabidopsis F-box protein superfamily. This subfamily also includes the F-box proteins TRANSPORT INHIBITOR RESPONSE1 (TIR1)/AUXIN SIGNALING F-BOX (AFB) proteins and EIN3 BINDING F-BOX proteins, which regulate auxin and ethylene responses, respectively. We show that loss of VFB function causes delayed plant growth and reduced lateral root formation. We find that the expression of a number of auxin-responsive genes and the activity of DR5:β-glucuronidase, a reporter for auxin reponse, are reduced in the vfb mutants. This finding correlates with an increase in the abundance of an AUXIN/INDOLE-3-ACETIC ACID repressor. However, we also find that auxin responses are not affected in the vfb mutants and that a representative VFB family member, VFB2, cannot functionally complement the tir1-1 mutant. We therefore exclude the possibility that VFBs are functional orthologs of TIR1/AFB proteins.
Publications
In selenocysteine (Sec, U)-containing proteins the selenenylsulfide bridge and its reduced thiol-selenol counterpart are usually the significant species. An important role for serine as flanking amino acid in the redox potential of S-S and S-Se bridges was proposed for some thioredoxin reductases. To check the generality of this proposal, model tetrapeptides (GCCG, SCCG, GCCS, SCCS, GCUG, SCUG, GCUS, SCUS) were synthesized, including the GCUG sequence of human thioredoxin reductase. The influence on the redox potential of S-Se and S-S bridges as a function of pH and of serine at different positions reveals (i) a strong general pH dependence, and (ii) a significant influence of flanking serine on disulfide only at basic pH.
Publications
Papaver alkaloids play a major role in medicine and pharmacy. In this study, [ring-13C6]-tyramine as a biogenetic precursor of these alkaloids was fed to Papaver somniferum seedlings. The alkaloid pattern was elucidated both by direct infusion high-resolution ESI-FT-ICR mass spectrometry and liquid chromatography/electrospray tandem mass spectrometry. Thus, based on this procedure, the structure of about 20 alkaloids displaying an incorporation of the labeled tyramine could be elucidated. These alkaloids belong to different classes, e.g. morphinan, benzylisoquinoline, protoberberine, benzo[c]phenanthridine, phthalide isoquinoline and protopine. The valuable information gained from the alkaloid profile demonstrates that the combination of these two spectrometric methods represents a powerful tool for evaluating biochemical pathways and facilitates the study of the flux of distant precursors into these natural products.
Publications
Glutaminyl cyclases (QCs) catalyze the formation of pyroglutamic acid at the N-terminus of several peptides and proteins. On the basis of the amino acid sequence of Carica papaya QC, we identified cDNAs of the putative counterparts from Solanum tuberosum and Arabidopsis thaliana. Upon expression of the corresponding cDNAs from both plants via the secretory pathway of Pichia pastoris, two active QC proteins were isolated. The specificity of the purified proteins was assessed using various substrates with different amino acid composition and length. Highest specificities were observed with substrates possessing large hydrophobic residues adjacent to the N-terminal glutamine and for fluorogenic dipeptide surrogates. However, compared to Carica papaya QC, the specificity constants were approximately one order of magnitude lower for most of the QC substrates analyzed. The QCs also catalyzed the conversion of N-terminal glutamic acid to pyroglutamic acid, but with approximately 105- to 106-fold lower specificity. The ubiquitous distribution of plant QCs prompted a search for potential substrates in plants. Based on database entries, numerous proteins, e.g., pathogenesis-related proteins, were found that carry a pyroglutamate residue at the N-terminus, suggesting QC involvement. The putative relevance of QCs and pyroglutamic acid for plant defense reactions is discussed.
Publications
The mutualistic interaction in arbuscular mycorrhiza (AM) is characterized by an exchange of mineral nutrients and carbon. The major benefit of AM, which is the supply of phosphate to the plant, and the stimulation of mycorrhization by low phosphate fertilization has been well studied. However, less is known about the regulatory function of carbon availability on AM formation. Here the effect of enhanced levels of hexoses in the root, the main form of carbohydrate used by the fungus, on AM formation was analyzed. Modulation of the root carbohydrate status was performed by expressing genes encoding a yeast (Saccharomyces cerevisiae)-derived invertase, which was directed to different subcellular locations. Using tobacco (Nicotiana tabacum) alc∷cwINV plants, the yeast invertase was induced in the whole root system or in root parts. Despite increased hexose levels in these roots, we did not detect any effect on the colonization with Glomus intraradices analyzed by assessment of fungal structures and the level of fungus-specific palmitvaccenic acid, indicative for the fungal carbon supply, or the plant phosphate content. Roots of Medicago truncatula, transformed to express genes encoding an apoplast-, cytosol-, or vacuolar-located yeast-derived invertase, had increased hexose-to-sucrose ratios compared to β-glucuronidase-transformed roots. However, transformations with the invertase genes did not affect mycorrhization. These data suggest the carbohydrate supply in AM cannot be improved by root-specifically increased hexose levels, implying that under normal conditions sufficient carbon is available in mycorrhizal roots. In contrast, tobacco rolC∷ppa plants with defective phloem loading and tobacco pyk10∷InvInh plants with decreased acid invertase activity in roots exhibited a diminished mycorrhization.
Publications
The effect of constitutive invertase overexpression on the arbuscular mycorrhiza (AM) is shown. The analysis of the enhanced potential for sucrose cleavage was performed with a heterozygous line of Nicotiana tabacum 35S::cwINV expressing a chimeric gene encoding apoplast‐located yeast‐derived invertase with the CaMV35S promoter. Despite the 35S promoter, roots of the transgenic plants showed no or only minor effects on invertase activity whereas the activity in leaves was increased at different levels. Plants with strongly elevated leaf invertase activity, which exhibited a strong accumulation of hexoses in source leaves, showed pronounced phenotypical effects like stunted growth and chlorosis, and an undersupply of the root with carbon. Moreover, transcripts of PR (pathogenesis related) genes accumulated in the leaves. In these plants, mycorrhization was reduced. Surprisingly, plants with slightly increased leaf invertase activity showed a stimulation of mycorrhization, particularly 3 weeks after inoculation. Compared with wild‐type, a higher degree of mycorrhization accompanied by a higher density of all fungal structures and a higher level of Glomus intraradices ‐specific rRNA was detected. Those transgenic plants showed no accumulation of hexoses in the source leaves, minor phenotypical effects and no increased PR gene transcript accumulation. The roots had even lower levels of phenolic compounds (chlorogenic acid and scopolin), amines (such as tyramine, dopamine, octopamine and nicotine) and some amino acids (including 5‐amino‐valeric acid and 4‐amino‐butyric acid), as well as an increased abscisic acid content compared with wild‐type. Minor metabolic changes were found in the leaves of these plants. The changes in metabolism and defense status of the plant and their putative role in the formation of an AM symbiosis are discussed.