- Results as:
- Print view
- Endnote (RIS)
- BibTeX
- Table: CSV | HTML
Publications
Publications
Publications
Publications
Publications
Publications
Publications
Publications
Publications
Publications
Research Mission and Profile
Molecular Signal Processing
Bioorganic Chemistry
Biochemistry of Plant Interactions
Cell and Metabolic Biology
Independent Junior Research Groups
Program Center MetaCom
Publications
Good Scientific Practice
Research Funding
Networks and Collaborative Projects
Symposia and Colloquia
Alumni Research Groups
Publications
Main conclusion The DNA-binding protein WHIRLY1, sharing structural similarities with ferritin, plays a role in the formation of iron cofactor proteins within chloroplasts. Abstract Previous studies indicated that barley plants with a knockdown of HvWHIRLY1 containing a minimal amount of the protein are compromised in chloroplast development and photosynthesis, and get chlorotic leaves when grown at high irradiance. Thereby, the leaves display signs of iron deficiency. Metal determination revealed, however, that leaves of WHIRLY1-deficient plants had a regular iron content. Nevertheless, WHIRLY1-deficiency affected the functionality of photosystem II less than that of photosystem I, which has a higher demand for iron. Immunological analyses revealed that components of both photosystems had reduced levels. Additionally, the levels of other chloroplast proteins containing different classes of iron cofactors were lower in the WHIRLY1-deficient plants compared to the wild type. In contrast, the level of the iron sequestering protein ferritin increased in WHIRLY1-deficient lines, whereby high irradiance intensified this effect. RNA analyses showed that the upregulation of ferritin coincided with an enhanced expression of the corresponding gene, reflecting an apparent overload of chloroplasts with free iron. Ferritin and WHIRLY proteins are known to share the same oligomeric structure. Therefore, the high abundance of ferritin in WHIRLY1-deficient plants might be a compensation for the reduced abundance of WHIRLY1. Enhanced expression levels of genes encoding photosynthesis proteins and iron cofactor proteins indicate a demand for protein formation or assembly of protein complexes. The results support a general role of WHIRLY1 in assembly and/or stabilization of chloroplast proteins and, moreover, suggest a specific function in sequestering and supply of iron in chloroplasts.
Publications
The tree species Eucalyptus camaldulensis shows exceptionally high tolerance against aluminum, a widespread toxic metal in acidic soils. In the roots of E. camaldulensis, aluminum is detoxified via the complexation with oenothein B, a hydrolyzable tannin. In our approach to elucidate the biosynthesis of oenothein B, we here report on the identification of E. camaldulensis enzymes that catalyze the formation of gallate, which is the phenolic constituent of hydrolyzable tannins. By systematical screening of E. camaldulensis dehydroquinate dehydratase/shikimate dehydrogenases (EcDQD/SDHs), we found two enzymes, EcDQD/SDH2 and 3, catalyzing the NADP+-dependent oxidation of 3-dehydroshikimate to produce gallate. Based on extensive in vitro assays using recombinant EcDQD/SDH2 and 3 enzymes, we present for the first time a detailed characterization of the enzymatic gallate formation activity, including the cofactor preferences, pH optima, and kinetic constants. Sequence analyses and structure modeling suggest the gallate formation activity of EcDQD/SDHs is based on the reorientation of 3-dehydroshikimate in the catalytic center, which facilitates the proton abstraction from the C5 position. Additionally, EcDQD/SDH2 and 3 maintain DQD and SDH activities, resulting in a 3-dehydroshikimate supply for gallate formation. In E. camaldulensis, EcDQD/SDH2 and 3 are co-expressed with UGT84A25a/b and UGT84A26a/b involved in hydrolyzable tannin biosynthesis. We further identified EcDQD/SDH1 as a “classical” bifunctional plant shikimate pathway enzyme and EcDQD/SDH4a/b as functional quinate dehydrogenases of the NAD+/NADH-dependent clade. Our data indicate that in E. camaldulensis the enzymes EcDQD/SDH2 and 3 provide the essential gallate for the biosynthesis of the aluminum-detoxifying metabolite oenothein B.
Publications
The essential trace element selenium (Se) is controversially discussed concerning its role in health and disease. Its various physiological functions are largely mediated by Se incorporation in the catalytic center of selenoproteins. In order to gain insights into the impact of Se deficiency and of supplementation with different Se compounds (selenite, selenate, selenomethionine) at defined concentrations (recommended, 150 μg/kg diet; excessive, 750 μg/kg diet) in murine colon tissues, a 20‐week feeding experiment was performed followed by analysis of the protein expression pattern of colon tissue specimens by 2D‐DIGE and MALDI‐TOF MS. Using this approach, 24 protein spots were identified to be significantly regulated by the different Se compounds. These included the antioxidant enzyme peroxiredoxin‐5 (PRDX5), proteins with binding capabilities, such as cofilin‐1 (COF1), calmodulin, and annexin A2 (ANXA2), and proteins involved in catalytic processes, such as 6‐phosphogluconate dehydrogenase (6PGD). Furthermore, the Se compounds demonstrated a differential impact on the expression of the identified proteins. Selected target structures were validated by qPCR and Western blot which mainly confirmed the proteomic profiling data. Thus, novel Se‐regulated proteins in colon tissues have been identified, which expand our understanding of the physiologic role of Se in colon tissue.
Publications
Main conclusionSolanum tuberosum tropinone reductase I reduced tropinone in vivo. Suppression of tropinone reductase II strongly reduced calystegines in sprouts. Overexpression of putrescine N -methyltransferase did not alter calystegine accumulation.Calystegines are hydroxylated alkaloids formed by the tropane alkaloid pathway. They accumulate in potato (Solanum tuberosum L., Solanaceae) roots and sprouting tubers. Calystegines inhibit various glycosidases in vitro due to their sugar-mimic structure, but functions of calystegines in plants are not understood. Enzymes participating in or competing with calystegine biosynthesis, including putrescine N-methyltransferase (PMT) and tropinone reductases (TRI and TRII), were altered in their activity in potato plants by RNA interference (RNAi) and by overexpression. The genetically altered potato plants were investigated for the accumulation of calystegines and for intermediates of their biosynthesis. An increase in N-methylputrescine provided by DsPMT expression was not sufficient to increase calystegine accumulation. Overexpression and gene knockdown of StTRI proved that S. tuberosum TRI is a functional tropinone reductase in vivo, but no influence on calystegine accumulation was observed. When StTRII expression was suppressed by RNAi, calystegine formation was severely compromised in the transformed plants. Under phytochamber and green house conditions, the StTRII RNAi plants did not show phenotypic alterations. Further investigation of calystegines function in potato plants under natural conditions is enabled by the calystegine deprived StTRII RNAi plants.
Publications
The essential trace element selenium (Se) is controversially discussed concerning its role in health and disease. Its various physiological functions are largely mediated by Se incorporation in the catalytic center of selenoproteins. In order to gain insights into the impact of Se deficiency and of supplementation with different Se compounds (selenite, selenate, selenomethionine) at defined concentrations (recommended, 150 μg/kg diet; excessive, 750 μg/kg diet) in murine colon tissues, a 20‐week feeding experiment was performed followed by analysis of the protein expression pattern of colon tissue specimens by 2D‐DIGE and MALDI‐TOF MS. Using this approach, 24 protein spots were identified to be significantly regulated by the different Se compounds. These included the antioxidant enzyme peroxiredoxin‐5 (PRDX5), proteins with binding capabilities, such as cofilin‐1 (COF1), calmodulin, and annexin A2 (ANXA2), and proteins involved in catalytic processes, such as 6‐phosphogluconate dehydrogenase (6PGD). Furthermore, the Se compounds demonstrated a differential impact on the expression of the identified proteins. Selected target structures were validated by qPCR and Western blot which mainly confirmed the proteomic profiling data. Thus, novel Se‐regulated proteins in colon tissues have been identified, which expand our understanding of the physiologic role of Se in colon tissue.
Publications
PTMs are defined as covalent additions to functional groups of amino acid residues in proteins like phosphorylation, glycosylation, S‐nitrosylation, acetylation, methylation, lipidation, SUMOylation as well as oxidation. Oxidation of proteins has been characterized as a double‐edged sword. While oxidative modifications, in particular of cysteine residues, are widely involved in the regulation of cellular homeostasis, oxidative stress resulting in the oxidation of biomolecules along with the disruption of their biological functions can be associated with the development of diseases, such as cancer, diabetes, and neurodegenerative diseases, respectively. This is also the case for advanced glycation end products, which result from chemical reactions of keto compounds such as oxidized sugars with proteins. The role of oxidative modifications under physiological and pathophysiological conditions remains largely unknown. Recently, novel technologies have been established that allow the enrichment, identification, and characterization of specific oxidative PTMs (oxPTMs). This is essential to develop strategies to prevent and treat diseases that are associated with oxidative stress. Therefore this review will focus on (i) the methods and technologies, which are currently applied for the detection, identification, and quantification of oxPTMs including the design of high throughput approaches and (ii) the analyses of oxPTMs related to physiological and pathological conditions.
Publications
PTMs are defined as covalent additions to functional groups of amino acid residues in proteins like phosphorylation, glycosylation, S‐nitrosylation, acetylation, methylation, lipidation, SUMOylation as well as oxidation. Oxidation of proteins has been characterized as a double‐edged sword. While oxidative modifications, in particular of cysteine residues, are widely involved in the regulation of cellular homeostasis, oxidative stress resulting in the oxidation of biomolecules along with the disruption of their biological functions can be associated with the development of diseases, such as cancer, diabetes, and neurodegenerative diseases, respectively. This is also the case for advanced glycation end products, which result from chemical reactions of keto compounds such as oxidized sugars with proteins. The role of oxidative modifications under physiological and pathophysiological conditions remains largely unknown. Recently, novel technologies have been established that allow the enrichment, identification, and characterization of specific oxidative PTMs (oxPTMs). This is essential to develop strategies to prevent and treat diseases that are associated with oxidative stress. Therefore this review will focus on (i) the methods and technologies, which are currently applied for the detection, identification, and quantification of oxPTMs including the design of high throughput approaches and (ii) the analyses of oxPTMs related to physiological and pathological conditions.
Publications
We applied an extended charge‐based fractional diagonal chromatography (ChaFRADIC) workflow to analyze the N‐terminal proteome of Arabidopsis thaliana seedlings. Using iTRAQ protein labeling and a multi‐enzyme digestion approach including trypsin, GluC, and subtilisin, a total of 200 μg per enzyme, and measuring only one third of each ChaFRADIC‐enriched fraction by LC‐MS, we quantified a total of 2791 unique N‐terminal peptides corresponding to 2249 different unique N‐termini from 1270 Arabidopsis proteins. Our data indicate the power, reproducibility, and sensitivity of the applied strategy that might be applicable to quantify proteolytic events from as little as 20 μg of protein per condition across up to eight different samples. Furthermore, our data clearly reflect the methionine excision dogma as well as the N‐end rule degradation pathway (NERP) discriminating into a stabilizing or destabilizing function of N‐terminal amino acid residues. We found bona fide NERP destabilizing residues underrepresented, and the list of neo N‐termini from wild type samples may represent a helpful resource during the evaluation of NERP substrate candidates. All MS data have been deposited in the ProteomeXchange with identifier PXD001855 (http://proteomecentral.proteomexchange.org/dataset/PXD001855).
Publications
We applied an extended charge‐based fractional diagonal chromatography (ChaFRADIC) workflow to analyze the N‐terminal proteome of Arabidopsis thaliana seedlings. Using iTRAQ protein labeling and a multi‐enzyme digestion approach including trypsin, GluC, and subtilisin, a total of 200 μg per enzyme, and measuring only one third of each ChaFRADIC‐enriched fraction by LC‐MS, we quantified a total of 2791 unique N‐terminal peptides corresponding to 2249 different unique N‐termini from 1270 Arabidopsis proteins. Our data indicate the power, reproducibility, and sensitivity of the applied strategy that might be applicable to quantify proteolytic events from as little as 20 μg of protein per condition across up to eight different samples. Furthermore, our data clearly reflect the methionine excision dogma as well as the N‐end rule degradation pathway (NERP) discriminating into a stabilizing or destabilizing function of N‐terminal amino acid residues. We found bona fide NERP destabilizing residues underrepresented, and the list of neo N‐termini from wild type samples may represent a helpful resource during the evaluation of NERP substrate candidates. All MS data have been deposited in the ProteomeXchange with identifier PXD001855 (http://proteomecentral.proteomexchange.org/dataset/PXD001855).
Publications
Water-soluble chlorophyll protein (WSCP) has been found in many Brassicaceae, most often in leaves. In many cases, its expression is stress-induced, therefore, it is thought to be involved in some stress response. In this work, recombinant WSCP from Arabidopsis thaliana (AtWSCP) is found to form chlorophyll-protein complexes in vitro that share many properties with recombinant or native WSCP from Brassica oleracea, BoWSCP, including an unusual heat resistance up to 100°C in aqueous solution. A polyclonal antibody raised against the recombinant apoprotein is used to identify plant tissues expressing AtWSCP. The only plant organs containing significant amounts of AtWSCP are the gynoecium in open flowers and the septum of developing siliques, specifically the transmission tract. In fully grown but still green siliques, the protein has almost disappeared. Possible implications for AtWSCP functions are discussed.