- Results as:
- Print view
- Endnote (RIS)
- BibTeX
- Table: CSV | HTML
Publications
Publications
Publications
Publications
Publications
Publications
Publications
Publications
Publications
Publications
Research Mission and Profile
Molecular Signal Processing
Bioorganic Chemistry
Biochemistry of Plant Interactions
Cell and Metabolic Biology
Independent Junior Research Groups
Program Center MetaCom
Publications
Good Scientific Practice
Research Funding
Networks and Collaborative Projects
Symposia and Colloquia
Alumni Research Groups
Publications
Transient expression in Nicotiana benthamiana offers a robust platform for the rapid production of complex secondary metabolites. It has proven highly effective in helping identify genes associated with pathways responsible for synthesizing various valuable natural compounds. While this approach has seen considerable success, it has yet to be applied to uncovering genes involved in anthocyanin biosynthetic pathways. This is because only a single anthocyanin, delphinidin 3‐O‐rutinoside, can be produced in N. benthamiana by activation of anthocyanin biosynthesis using transcription factors. The production of other anthocyanins would necessitate the suppression of certain endogenous flavonoid biosynthesis genes while transiently expressing others. In this work, we present a series of tools for the reconstitution of anthocyanin biosynthetic pathways in N. benthamiana leaves. These tools include constructs for the expression or silencing of anthocyanin biosynthetic genes and a mutant N. benthamiana line generated using CRISPR. By infiltration of defined sets of constructs, the basic anthocyanins pelargonidin 3‐O‐glucoside, cyanidin 3‐O‐glucoside and delphinidin 3‐O‐glucoside could be obtained in high amounts in a few days. Additionally, co‐infiltration of supplementary pathway genes enabled the synthesis of more complex anthocyanins. These tools should be useful to identify genes involved in the biosynthesis of complex anthocyanins. They also make it possible to produce novel anthocyanins not found in nature. As an example, we reconstituted the pathway for biosynthesis of Arabidopsis anthocyanin A5, a cyanidin derivative and achieved the biosynthesis of the pelargonidin and delphinidin variants of A5, pelargonidin A5 and delphinidin A5.
Publications
0
Publications
0
Publications
In biological discovery and engineering research, there is a need to spatially and/or temporally regulate transgene expression. However, the limited availability of promoter sequences that are uniquely active in specific tissue-types and/or at specific times often precludes co-expression of >multiple transgenes in precisely controlled developmental contexts. Here, we developed a system for use in rice that comprises synthetic designer transcription activator-like effectors (dTALEs) and cognate synthetic TALE-activated promoters (STAPs). The system allows multiple transgenes to be expressed from different STAPs, with the spatial and temporal context determined by a single promoter that drives expression of the dTALE. We show that two different systems—dTALE1-STAP1 and dTALE2-STAP2—can activate STAP-driven reporter gene expression in stable transgenic rice lines, with transgene transcript levels dependent on both dTALE and STAP sequence identities. The relative strength of individual STAP sequences is consistent between dTALE1 and dTALE2 systems but differs between cell-types, requiring empirical evaluation in each case. dTALE expression leads to off-target activation of endogenous genes but the number of genes affected is substantially less than the number impacted by the somaclonal variation that occurs during the regeneration of transformed plants. With the potential to design fully orthogonal dTALEs for any genome of interest, the dTALE-STAP system thus provides a powerful approach to fine-tune the expression of multiple transgenes, and to simultaneously introduce different synthetic circuits into distinct developmental contexts.
Publications
The selective N- or O-alkylation of 4-(trihalomethyl)-pyrimidin-2(1H)-ones, using 5-bromo enones/enaminones as alkylating agents, is reported. It was found that the selectivity toward the N-or O-regioisomer is driven by the substituent present at the 6-position of the pyrimidine ring, thus enabling the preparation of each isomer as the sole product, in 60−95% yields. Subsequent cyclocondensation of the enaminone moiety with nitrogen dinucleophiles led to pyrimidine−azole conjugates in 55−83% yields.
Publications
Agriculture is by far the biggest water consumer on our planet, accounting for 70 percent of all freshwater withdrawals. Climate change and a growing world population increase pressure on agriculture to use water more efficiently (‘more crop per drop’). Water‐use efficiency (WUE) and drought tolerance of crops are complex traits that are determined by many physiological processes whose interplay is not well understood. Here we describe a combinatorial engineering approach to optimize signaling networks involved in the control of stress tolerance. Screening a large population of combinatorially transformed plant lines, we identified a combination of calcium‐dependent protein kinase genes that confers enhanced drought stress tolerance and improved growth under water‐limiting conditions. Targeted introduction of this gene combination into plants increased plant survival under drought and enhanced growth under water‐limited conditions. Our work provides an efficient strategy for engineering complex signaling networks to improve plant performance under adverse environmental conditions, which does not depend on prior understanding of network function.
Publications
Hypericin is a molecule of high pharmaceutical importance that is synthesized and stored in dark glands (DGs) of St. John's wort (Hypericum perforatum). Understanding which genes are involved in dark gland development and hypericin biosynthesis is important for the development of new Hypericum extracts that are highly demanded for medical applications. We identified two transcription factors, whose expression is strictly synchronized with the differentiation of DGs. We correlated the content of hypericin, pseudohypericin, endocrocin, skyrin glycosides and several flavonoids with gene expression and DG development to obtain a revised model for hypericin biosynthesis. Here we report for the first‐time genotypes which are polymorphic for the presence/total‐absence (G+/G‐) of DGs in their placental tissues (PTs). DG development was characterized in PTs using several microscopy techniques. Fourier‐transformed infrared microscopy was established as a novel method to precisely locate polyaromatic compounds, such as hypericin, in plant tissues. In addition, we obtained transcriptome and metabolome profiles of unprecedented resolution in Hypericum. This study addresses for the first time the development of dark glands and identifies genes that constitute strong building blocks for the further elucidation of hypericin synthesis, its manipulation in plants, its engineering in microbial systems, and its applications in medical research.
Publications
Peptide ligation and macrocyclization are among the most relevant approaches in the field of peptide chemistry. Whereas a variety of strategies relying on coupling reagents and native chemical ligation are available, there is a continuous need for efficient peptide ligation and cyclization methods. Herein we report on the utilization of convertible isonitriles as effective synthetic tools for the ligation and macrocyclization of peptides arising from isocyanide-based multicomponent reactions. The strategy relies on the use of convertible isonitriles—derived from Fukuyama amines—and peptide carboxylic acids in Ugi and Passerini reactions to afford N-alkylated peptides and depsipeptides, respectively, followed by conversion of the C-terminal amide onto either N-peptidoacyl indoles or pyrroles. Such activated peptides proved efficient in the ligation to peptidic, lipidic and fluorescently labeled amines and in macrocyclization protocols. As a result, a wide set of N-substituted peptides (with methyl, glycosyl and amino acids as N-substituents), cyclic N-methylated peptides and a depsipeptide were produced in good yields using conditions that involve either classical heating or microwave irradiation. This report improves the repertoire of peptide covalent modification methods by exploiting the synthetic potential of multicomponent reactions and convertible isonitriles.
Publications
The cyclization of peptide side chains has been traditionally used to either induce or stabilize secondary structures (β-strands, helices, reverse turns) in short peptide sequences. So far, classic peptide coupling, nucleophilic substitution, olefin metathesis, and click reactions have been the methods of choice to fold synthetic peptides by means of macrocyclization. This article describes the utilization of the Ugi reaction for the side chain-to-side chain and side chain-to-termini macrocyclization of peptides, thus enabling not only access to stable folded structures but also the incorporation of exocyclic functionalities as N-substituents. Analysis of the NMR-derived structures revealed the formation of helical turns, β-bulges, and α-turns in cyclic peptides cross-linked at i, i + 3 and i, i + 4 positions, proving the folding effect of the multicomponent Ugi macrocyclization. Molecular dynamics simulation provided further insights on the stability and molecular motion of the side chain cross-linked peptides.
Publications
An efficient and convenient method was developed for the regioselective formation of 2-aryl- or 2,5-diarylselenophenes via a palladium-catalyzed direct arylation. This protocol is suitable for a wide range of aryl halides containing different functional groups. The 2-arylated substrates can undergo an additional regioselective direct arylation event furnishing symmetrical or unsymmetrical 2,5-diaryl selenophenes in good yield. Competition experiments and the role of the acid additive are in agreement with a concerted metalation deprotonation (CMD) pathway.