logo ipb
logo ipb mobile
x
  • Deutsch
  • English
Login
  • Research
    • Research Mission and Profile

    • Molecular Signal Processing

      • Secretariat & All Staff
      • Technical Resources
      • Publications
      • Research Groups
        • Nutrient Sensing
          • Projects
          • Staff
          • Publications
          • Collaborations
        • Symbiosis Signaling
          • Projects
          • Staff
          • Publications
          • Collaborations
        • Jasmonate Signaling
          • Projects
          • Staff
          • Publications
          • Collaborations
    • Bioorganic Chemistry

      • Secretariat & All Staff
      • Technical Resources
      • Publications
      • Research Groups
        • Bioactives
          • Projects
          • Staff
          • Publications
          • Collaborations
        • Natural Products & Metabolomics
          • Projects
          • Staff
          • Publications
          • Collaborations
        • Biotechnology
          • Projects
          • Staff
          • Publications
          • Collaborations
        • Biofunctional Synthesis
          • Projects
          • Staff
          • Publications
          • Collaborations
        • Computational Chemistry
          • Projects
          • Staff
          • Publications
          • Collaborations
        • Data & Resources
          • Projects
          • Staff
          • Publications
          • Collaborations
    • Biochemistry of Plant Interactions

      • Secretariat & All Staff
      • Technical Resources
      • Publications
      • Research Groups
        • Calcium-dependent Protein Kinases
          • Projects
          • Staff
          • Publications
          • Collaborations
        • Cellular Signaling
          • Projects
          • Staff
          • Publications
          • Collaborations
        • Nuclear Processes in Plant Defense
          • Projects
          • Staff
          • Publications
          • Collaborations
    • Cell and Metabolic Biology

      • Secretariat & All Staff
      • Technical Resources
      • Publications
      • Research Groups
        • Glandular Trichomes and Isoprenoid Biosynthesis
          • Projects
          • Staff
          • Publications
          • Collaborations
        • Jasmonate Function & Mycorrhiza
          • Projects
          • Staff
          • Publications
          • Collaborations
        • Phenylpropanoid Metabolism
          • Projects
          • Staff
          • Publications
          • Collaborations
        • Synthetic Biology
          • Projects
          • Staff
          • Publications
          • Collaborations
    • Independent Junior Research Groups

      • Research Groups
        • Receptor Biochemistry
          • Projects
          • Staff
          • Publications
          • Collaborations
    • Program Center MetaCom

      • Secretariat & All staff
      • Publikationen
      • Our Equipment
      • Research Groups
        • Metabolomics Facility
          • Projects
          • Staff
          • Publications
          • Methods
        • MetaCom Analytical Laboratory
          • Projects
          • Staff
          • Publications
          • Methods
        • Computational Plant Biochemistry
          • Projects
          • Staff
          • Publications
          • Collaborations
        • Biochemical Genetics of Metabolic Plasticity
          • Projects
          • Staff
          • Publications
          • Collaborations
    • Publications

    • Good Scientific Practice

    • Research Funding

    • Networks and Collaborative Projects

      • Collaborative Projects as Coordinator
        • Completed Projects as Coordinator
      • Collaborative Projects as Partner
        • Completed Projects as Partner
      • Networks
    • Symposia and Colloquia

      • Lectures
        • IPB Seminars
      • Leibniz Plant Biochemistry Symposia
    • Alumni Research Groups

      • Research Groups
        • Auxin Signaling
          • Projects
          • Publications
        • Bioorganic Chemistry
          • Projects
          • Publications
        • Designer Glycans
          • Projects
          • Publications
        • Jasmonate Mode of Action
          • Publications
        • Protein Recognition and Degradation
          • Projects
          • Publications
        • Regulatory RNAs (MLU-associated group)
          • Projects
          • Publications
        • Signal Integration
          • Projects
          • Publications
        • Ubiquitination in Immunity
          • Projects
          • Publications
        • Cellular Coordination
          • Projects
          • Publications
  • Infrastructure
    • Databases and Tools

      • XCMS
      • Rdisop
      • CAMERA
      • MetShot
      • MassBank
      • MetFrag
      • MetFamily
      • PaCeQuant
      • CytoskeletonAnalyzer
      • GoldenMutagenesis
      • cisHighlight
      • FlagScreen
      • RootDetection
    • Technical Resources

    • Imaging Unit

    • Greenhouses and Phytochambers

    • Library Services

      • OPAC
      • Electronic Journals Library
      • Service for Employees
  • Institute
    • Organizational Chart

    • Management and Boards

      • Board of Trustees
      • Scientific Advisory Board
      • IPB Management / Board of Directors
      • Scientific Council
      • Authorized Representatives of the IPB
      • Staff Council
      • Statutes
    • Administration and Infrastructure

      • Secretariat & All Staff
      • Working Groups
        • Human Resources
        • Finance & Accounting
        • Purchasing
        • IT & Technical Support
        • Experimental Nursery
        • Facility Management
        • Library
        • Digitalization
    • Energy Management

      • Objectives and Measures
      • Energy Management Team
    • Diversity, Family and Equality

    • Public Tendering

    • Patents and Licensing

    • The IPB Welcoming Culture

    • Guest Houses

    • IPB Site Map

    • Brief IPB History

      • Bildergalerie zur Historie
      • Alte Filmsequenzen zum Institut
      • Historischer Massenspektrograph
    • Alumni Network

      • The IPB as a career launching pad
  • Career
    • Data protection information for applicants

    • PhD Program

      • PhD Student Representatives
      • DoCou - Doctoral Training Courses
      • PSSC
    • Postdocs

    • Berufsausbildung

  • Public Relations
    • News

      • 2024
      • 2023
      • 2022
      • Archiv Aktuelles
        • 2021
        • 2020
        • 2019
        • 2018
        • 2017
        • 2016
        • 2015
        • 2014
        • vor 2014
    • News Ticker Science

      • News Ticker 2024
      • News Ticker 2023
      • News Ticker 2022
      • News Ticker Archive
        • News Ticker 2021
        • News Ticker 2020
        • News Ticker 2019
    • Press Releases

      • 2024
      • 2023
      • 2022
      • Archive Press Releases
        • 2021
        • 2020
        • 2019
        • 2018
        • 2017
        • 2016
        • 2015
        • 2014
        • 2013
        • 2012
        • 2011
        • 2010
        • 2009
        • 2008
        • 2007
        • 2006
        • 2005
        • 2004
        • 2003
        • 2002
    • IPB Pressespiegel

    • Lange Nacht, die Wissen schafft

      • 2024 Long Night of Sciences
      • 2022 Long Night of Sciences
    • IPB Newsletter

    • Printed / Information Material

    • Scientific Reports / Research Highlights

    • Events

      • 2024 Leibniz Plant Biochemistry Symposium
    • Cover Art

    • Citizen Science: Pilzberatung

      • Das Reich der Pilze
      • Pilzberatung
      • Forschung an Pilzen
  • Contact
    • Directions for Visitors

    • Staff Directory

    • Imprint

    • Data Protection

    • Accessibility

  1. IPB Halle
  2. Research
  3. Publications

    • Research Mission and Profile
    • Trenner 0
    • Molecular Signal Processing
      • Secretariat & All Staff
      • Technical Resources
      • Publications
      • Research Groups
        • Nutrient Sensing
        • Symbiosis Signaling
        • Jasmonate Signaling
    • Bioorganic Chemistry
      • Secretariat & All Staff
      • Technical Resources
      • Publications
      • Research Groups
        • Bioactives
        • Natural Products & Metabolomics
        • Biotechnology
        • Biofunctional Synthesis
        • Computational Chemistry
        • Data & Resources
    • Biochemistry of Plant Interactions
      • Secretariat & All Staff
      • Technical Resources
      • Publications
      • Research Groups
        • Calcium-dependent Protein Kinases
        • Cellular Signaling
        • Nuclear Processes in Plant Defense
    • Cell and Metabolic Biology
      • Secretariat & All Staff
      • Technical Resources
      • Publications
      • Research Groups
        • Glandular Trichomes and Isoprenoid Biosynthesis
        • Jasmonate Function & Mycorrhiza
        • Phenylpropanoid Metabolism
        • Synthetic Biology
    • Independent Junior Research Groups
      • Research Groups
        • Receptor Biochemistry
    • Program Center MetaCom
      • Secretariat & All staff
      • Publikationen
      • Our Equipment
      • Research Groups
        • Metabolomics Facility
        • MetaCom Analytical Laboratory
        • Computational Plant Biochemistry
        • Biochemical Genetics of Metabolic Plasticity
    • Trenner 1
    • Publications
    • Good Scientific Practice
    • Research Funding
    • Trenner
    • Networks and Collaborative Projects
      • Collaborative Projects as Coordinator
        • Completed Projects as Coordinator
      • Collaborative Projects as Partner
        • Completed Projects as Partner
      • Networks
    • Symposia and Colloquia
      • Lectures
        • IPB Seminars
      • Leibniz Plant Biochemistry Symposia
    • Trenner
    • Alumni Research Groups
      • Research Groups
        • Auxin Signaling
        • Bioorganic Chemistry
        • Designer Glycans
        • Jasmonate Mode of Action
        • Protein Recognition and Degradation
        • Regulatory RNAs (MLU-associated group)
        • Signal Integration
        • Ubiquitination in Immunity
        • Cellular Coordination

Advanced Search

  • Type of publication
    • Publication 46
  • Year
    • 2004 3
      2005 3
      2006 3
      2008 6
      2012 3
      2013 8
      2016 4
      2018 1
      2019 3
      2020 2
      2022 4
      2023 4
      2024 2
  • Journal / Volume / Preprint Server Sorted by frequency and by alphabetical order
    • Phytochemistry 366
      Plant Physiol. 231
      Plant J. 220
      Planta 159
      bioRxiv 155
      Plant Cell 124
      New Phytol. 88
      J. Biol. Chem. 87
      FEBS Lett. 85
      0 84
      Vietnam J. Chem. 76
      J. Exp. Bot. 70
      Front. Plant Sci. 68
      PLOS ONE 62
      Proc. Natl. Acad. Sci. U.S.A. 62
      J. Plant Physiol. 57
      Tetrahedron Lett. 52
      Angew. Chem. Int. Ed. 51
      Plant Cell Physiol. 46
      Angew. Chem. 45
      Mol. Plant Microbe Interact. 45
      Trends Plant Sci. 43
      Methods Mol. Biol. 42
      Int. J. Mol. Sci. 39
      J. Org. Chem. 37
      Plant Signal Behav. 36
      Plant Mol. Biol. 34
      Molecules 33
      Synthesis 33
      Anal. Bioanal. Chem. 32
      Nat. Prod. Commun. 32
      Curr. Opin. Plant Biol. 31
      Biol. Chem. 30
      J. Nat. Prod. 30
      Metabolomics 30
      Tetrahedron 30
      Biochem. Syst. Ecol. 29
      Chem. Commun. 29
      J. Agr. Food Chem. 29
      Plant Cell Environ. 29
      Planta Med. 29
      ChemBioChem 28
      Org. Biomol. Chem. 28
      Eur. J. Org. Chem. 27
      Synlett 26
      BMC Plant Biol. 25
      Z. Naturforsch. C 25
      Anal. Chem. 24
      Theor. Appl. Genet. 24
      BMC Bioinformatics 23
      J. Mass Spectrom. 22
      Mycorrhiza 22
      Phytochem. Anal. 22
      Beilstein J. Org. Chem. 21
      Mol. Plant Pathol. 21
      Plant Growth Regul. 21
      Proteomics 21
      Sci. Rep. 21
      Eur. J. Biochem. 18
      J. Cheminform. 18
      Metabolites 18
      Nat. Commun. 18
      Pharmazie 18
      Plant Biol. 18
      Curr. Biol. 17
      Org. Lett. 17
      Plants 17
      Fitoterapia 16
      J. Med. Chem. 16
      Mol. Plant 16
      Physiol. Plant. 16
      Science 16
      Amino Acids 15
      Anal. Biochem. 15
      ChemRxiv 15
      Eur. J. Med. Chem. 15
      Food Chem. 15
      Nat. Prod. Res. 15
      Nature 15
      Tetrahedron: Asymmetry 15
      Biologie in unserer Zeit 14
      Chem. Biodivers. 14
      J. Am. Chem. Soc. 14
      J. Mol. Model. 14
      J. Plant Growth Regul. 14
      J. Proteome Res. 14
      Nat. Chem. Biol. 14
      Plant Sci. 14
      BIOspektrum 13
      Mol. Cell. Proteomics 13
      Organometallics 13
      Adv. Exp. Med. Biol. 12
      Biochem. Soc. Trans. 12
      Biochimie 12
      ChemCatChem 12
      EMBO J. 12
      J. Mol. Biol. 12
      Nucleic Acids Res. 12
      Rec. Nat. Prod. 12
      Dalton Trans. 11
  • Author Sorted by frequency and by alphabetical order
    • Brandt, W. 14
      Neumann, S. 14
      Wessjohann, L. A. 14
      Schymanski, E. L. 8
      Treutler, H. 5
      Weissenborn, M. J. 5
      Wessjohann, L. 4
      Bräuer, L. 3
      Davari, M. D. 3
      Dessoy, M. A. 3
      Eubel, J. 3
      Feussner, I. 3
      Fulhorst, M. 3
      Gao, W. 3
      Gromer, S. 3
      Gummadova, J. 3
      Heuts, D. P. H. M. 3
      Levy, C. 3
      Olkhov, R. V. 3
      Peters, K. 3
      Schulze, D. 3
      Scrutton, N. S. 3
      Shaw, A. M. 3
      Wasternack, C. 3
      Zakharova, S. 3
      Zenk, M. H. 3
      Darimont, D. 2
      Gerlich, M. 2
      Hauer, B. 2
      Llaudet, E. C. 2
      Matiychyn, I. 2
      Rainer, J. 2
      Ruttkies, C. 2
      Salek, R. M. 2
      Samba, R. 2
      Stanstrup, J. 2
      Stelzle, M. 2
      Stravs, M. A. 2
      Witting, M. 2
      Ansorge-Schumacher, M. 1
      Badia, J. M. 1
      Barrios, A. F. G. 1
      Broeckling, C. D. 1
      Cala, M. P. 1
      Camargo, F. D. G. 1
      Chalo, D. M. 1
      Cifuentes, J. 1
      Corujo, M. 1
      Crusoe, M. R. 1
      Cruz, J. C. 1
      Cui, H. 1
      Davari, M. 1
      Dhar, D. 1
      Dippe, M. 1
      Droste, J. 1
      Döll, S. 1
      Fernández-Niño, M. 1
      Frainay, C. 1
      Franke, K. 1
      Funke, E. 1
      Gabriel, J. 1
      Gadelha, L. 1
      Gallo Molina, A. C. 1
      Gatto, L. 1
      Gibb, S. 1
      González, C. 1
      Guevara-Suarez, M. 1
      Hankemeier, T. 1
      Helmus, R. 1
      Herrmann, S. 1
      Hoffmann, N. 1
      Jaeger, K. 1
      Jourdan, F. 1
      Kakudidi, E. 1
      Khosa, S. 1
      Kindt, A. S. D. 1
      Kirschning, A. 1
      Kloss, F. 1
      König-Ries, B. 1
      Lennicke, C. 1
      Ludwig, J. 1
      Ludwig, S. 1
      Mathé, E. 1
      Merlet, B. 1
      Moreno-Pedraza, A. 1
      Muñoz-Camargo, C. 1
      Méndez, Y. 1
      Naake, T. 1
      Nagia, M. 1
      Namukobe, J. 1
      Nchiozem-Ngnitedem, V.-A. 1
      Neubauer, P. R. 1
      Nicolotti, L. 1
      Origa-Oryem, H. 1
      Pecher, P. 1
      Pick, L. M. 1
      Pienkny, S. 1
      Pietzsch, M. 1
      Pourhassan N., Z. 1
      Pérez, C. S. 1
  • Year
  • Type of publication
Search narrowed by: Journal / Volume / Preprint Server Sorted by frequency and by alphabetical order: ChemBioChem Journal / Volume / Preprint Server Sorted by frequency and by alphabetical order: Metabolites Remove all filters
Displaying results 1 to 10 of 46.
  • Results as:
  • Print view
  • Endnote (RIS)
  • BibTeX
  • Table: CSV | HTML
Results per page:
  • 1
  • 2
  • 3
  • 4
  • 5

Publications

Zulfiqar, M.; Crusoe, M. R.; König-Ries, B.; Steinbeck, C.; Peters, K.; Gadelha, L.; Implementation of FAIR practices in computational metabolomics workflows—A case study Metabolites 14 118 (2024) DOI: 10.3390/metabo14020118
  • Abstract
  • Internet
  • BibText
  • RIS

Scientific workflows facilitate the automation of data analysis tasks by integrating various software and tools executed in a particular order. To enable transparency and reusability in workflows, it is essential to implement the FAIR principles. Here, we describe our experiences implementing the FAIR principles for metabolomics workflows using the Metabolome Annotation Workflow (MAW) as a case study. MAW is specified using the Common Workflow Language (CWL), allowing for the subsequent execution of the workflow on different workflow engines. MAW is registered using a CWL description on WorkflowHub. During the submission process on WorkflowHub, a CWL description is used for packaging MAW using the Workflow RO-Crate profile, which includes metadata in Bioschemas. Researchers can use this narrative discussion as a guideline to commence using FAIR practices for their bioinformatics or cheminformatics workflows while incorporating necessary amendments specific to their research area.

Publications

Struwe, H.; Droste, J.; Dhar, D.; Davari, M. D.; Kirschning, A.; Chemoenzymatic synthesis of a new germacrene derivative named germacrene F ChemBioChem 25 e202300599 (2024) DOI: 10.1002/cbic.202300599
  • Abstract
  • Internet
  • BibText
  • RIS

The new farnesyl pyrophosphate (FPP) derivative with a shifted olefinic double bond from C6‐C7 to C7‐C8 is accepted and converted by the sesquiterpene cyclases protoilludene synthase (Omp7) as well as viridiflorene synthase (Tps32). In both cases, a so far unknown germacrene derivative was found to be formed, which we name “germacrene F”. Both cases are examples in which a modification around the central olefinic double bond in FPP leads to a change in the mode of initial cyclization (from 1→11 to 1→10). For Omp7 a rationale for this behaviour was found by carrying out molecular docking studies. Temperature‐dependent NMR experiments, accompanied by NOE studies, show that germacrene F adopts a preferred mirror‐symmetric conformation with both methyl groups oriented in the same directions in the cyclodecane ring.

Publications

Vasco, A. V.; Méndez, Y.; González, C.; Pérez, C. S.; Reguera, L.; Wessjohann, L. A.; Rivera, D. G.; Advancing multicomponent strategies to macrobicyclic peptides ChemBioChem 24 e202300229 (2023) DOI: 10.1002/cbic.202300229
  • Abstract
  • Internet
  • BibText
  • RIS

Macrocyclization of peptides is typically used to fix specific bioactive conformations and improve their pharmacological properties. Recently, macrobicyclic peptides have received special attention owing to their capacity to mimic protein structures or be key components of peptide-drug conjugates. Here, we describe the development of novel synthetic strategies for two distinctive types of peptide macrobicycles. A multicomponent macrocyclo-dimerization approach is introduced for the production of interconnected β-turns, allowing two macrocyclic rings to be formed and dimerized in one pot. Also, an on-resin double stapling strategy is described for the assembly of lactam-bridged macrobicycles with stable tertiary folds.

Publications

Chalo, D. M.; Franke, K.; Nchiozem-Ngnitedem, V.-A.; Kakudidi, E.; Origa-Oryem, H.; Namukobe, J.; Kloss, F.; Yenesew, A.; Wessjohann, L. A.; Prenylated isoflavanones with antimicrobial potential from the root bark of Dalbergia melanoxylon Metabolites 13 678 (2023) DOI: 10.3390/metabo13060678
  • Abstract
  • Internet
  • BibText
  • RIS

Dalbergia melanoxylon Guill. & Perr (Fabaceae) is widely utilized in the traditional medicine of East Africa, showing effects against a variety of ailments including microbial infections. Phytochemical investigation of the root bark led to the isolation of six previously undescribed prenylated isoflavanones together with eight known secondary metabolites comprising isoflavanoids, neoflavones and an alkyl hydroxylcinnamate. Structures were elucidated based on HR-ESI-MS, 1- and 2-D NMR and ECD spectra. The crude extract and the isolated compounds of D. melanoxylon were tested for their antibacterial, antifungal, anthelmintic and cytotoxic properties, applying established model organisms non-pathogenic to humans. The crude extract exhibited significant antibacterial activity against Gram-positive Bacillus subtilis (97% inhibition at 50 μg/mL) and antifungal activity against the phytopathogens Phytophthora infestans, Botrytis cinerea and Septoria tritici (96, 89 and 73% at 125 μg/mL, respectively). Among the pure compounds tested, kenusanone H and (3R)-tomentosanol B exhibited, in a panel of partially human pathogenic bacteria and fungi, promising antibacterial activity against Gram-positive bacteria including methicillin-resistant Staphylococcus aureus (MRSA) and Mycobacterium showing MIC values between 0.8 and 6.2 μg/mL. The observed biological effects support the traditional use of D. melanoxylon and warrant detailed investigations of its prenylated isoflavanones as antibacterial lead compounds.

Publications

Camargo, F. D. G.; Santamaria-Torres, M.; Cala, M. P.; Guevara-Suarez, M.; Restrepo, S.; Sánchez-Camargo, A.; Fernández-Niño, M.; Corujo, M.; Gallo Molina, A. C.; Cifuentes, J.; Serna, J. A.; Cruz, J. C.; Muñoz-Camargo, C.; Barrios, A. F. G.; Genome-scale metabolic reconstruction, non-targeted LC-QTOF-MS based metabolomics data, and evaluation of anticancer activity of Cannabis sativa leaf extracts Metabolites 13 788 (2023) DOI: 10.3390/metabo13070788
  • Abstract
  • Internet
  • BibText
  • RIS

Over the past decades, Colombia has suffered complex social problems related to illicit crops, including forced displacement, violence, and environmental damage, among other consequences for vulnerable populations. Considerable effort has been made in the regulation of illicit crops, predominantly Cannabis sativa, leading to advances such as the legalization of medical cannabis and its derivatives, the improvement of crops, and leaving an open window to the development of scientific knowledge to explore alternative uses. It is estimated that C. sativa can produce approximately 750 specialized secondary metabolites. Some of the most relevant due to their anticancer properties, besides cannabinoids, are monoterpenes, sesquiterpenoids, triterpenoids, essential oils, flavonoids, and phenolic compounds. However, despite the increase in scientific research on the subject, it is necessary to study the primary and secondary metabolism of the plant and to identify key pathways that explore its great metabolic potential. For this purpose, a genome-scale metabolic reconstruction of C. sativa is described and contextualized using LC-QTOF-MS metabolic data obtained from the leaf extract from plants grown in the region of Pesca-Boyaca, Colombia under greenhouse conditions at the Clever Leaves facility. A compartmentalized model with 2101 reactions and 1314 metabolites highlights pathways associated with fatty acid biosynthesis, steroids, and amino acids, along with the metabolism of purine, pyrimidine, glucose, starch, and sucrose. Key metabolites were identified through metabolomic data, such as neurine, cannabisativine, cannflavin A, palmitoleic acid, cannabinoids, geranylhydroquinone, and steroids. They were analyzed and integrated into the reconstruction, and their potential applications are discussed. Cytotoxicity assays revealed high anticancer activity against gastric adenocarcinoma (AGS), melanoma cells (A375), and lung carcinoma cells (A549), combined with negligible impact against healthy human skin cells.

Publications

Pick, L. M.; Wenzlaff, J.; Yousefi, M.; Davari, M.; Ansorge-Schumacher, M.; Lipase‐mediated conversion of protecting group silyl ethers: An unspecific side reaction ChemBioChem 24 e202300384 (2023) DOI: 10.1002/cbic.202300384
  • Abstract
  • Internet
  • BibText
  • RIS

Silyl ether protecting groups are important tools in organic synthesis, ensuring selective reactions of hydroxyl functional groups. Enantiospecific formation or cleavage could simultaneously enable the resolution of racemic mixtures and thus significantly increase the efficiency of complex synthetic pathways. Based on reports that lipases, which today are already particularly important tools in chemical synthesis, can catalyze the enantiospecific turnover of trimethylsilanol (TMS)-protected alcohols, the goal of this study was to determine the conditions under which such a catalysis occurs. Through detailed experimental and mechanistic investigation, we demonstrated that although lipases mediate the turnover of TMS-protected alcohols, this occurs independently of the known catalytic triad, as this is unable to stabilize a tetrahedral intermediate. The reaction is essentially non-specific and therefore most likely completely independent of the active site. This rules out lipases as catalysts for the resolution of racemic mixtures alcohols through protection or deprotection with silyl groups.

Publications

Herrmann, S.; Dippe, M.; Pecher, P.; Funke, E.; Pietzsch, M.; Wessjohann, L. A.; Engineered bacterial flavin‐dependent monooxygenases for the regiospecific hydroxylation of polycyclic phenols ChemBioChem 23 e202100480 (2022) DOI: 10.1002/cbic.202100480
  • Abstract
  • Internet
  • BibText
  • RIS

4-Hydroxyphenylacetate 3-hydroxylase (4HPA3H), a flavin-dependent monooxygenase from E. coli that catalyzes the hydroxylation of monophenols to catechols, was modified by rational re-design to convert also more bulky substrates, especially phenolic natural products like phenylpropanoids, flavones or coumarins. Selected amino acid positions in the binding pocket of 4HPA3H were exchanged by residues from the homologous protein from Pseudomonas aeruginosa, yielding variants with improved conversion of spacious substrates such as the flavonoid naringenin or the alkaloid mimetic 2-hydroxycarbazole. Reactions were followed by an adapted Fe(III)-catechol chromogenic assay selective for the products. Especially substitution of the residue Y301 facilitated modulation of substrate specificity: introduction of non-aromatic but hydrophobic (iso)leucine resulted in the preference of the substrate ferulic acid (having a guaiacyl (guajacyl) moiety, part of the vanilloid motif) over unsubstituted monophenols. The in vivo (whole-cell biocatalysts) and in vitro (three-enzyme cascade) transformations of substrates by 4HPA3H and its optimized variants was strictly regiospecific and proceeded without generation of by-products.

Publications

Weigel, B.; Ludwig, J.; Weber, R. A.; Ludwig, S.; Lennicke, C.; Schrank, P.; Davari, M. D.; Nagia, M.; Wessjohann, L. A.; Heterocyclic and alkyne terpenoids by terpene synthase‐mediated biotransformation of non‐natural prenyl diphosphates: Access to new fragrances and probes ChemBioChem 23 e202200211 (2022) DOI: 10.1002/cbic.202200211
  • Abstract
  • Internet
  • BibText
  • RIS

Terpene synthase-mediated biotransformation of eleven synthetic sulfur- or oxygen-containing non-natural prenyl diphosphates resulted in the formation of five novel terpenoids and analogues. Uniquely, they trap intermediate steps and form heterocycles or compounds with alkyne side chains. Computational modelling differentiates convertible from inconvertible substrates and thereby provides an understanding of the detailed molecular mechanism of terpene cyclases. Two terpene cyclases were used as biocatalytic tool, namely, limonene synthase from Cannabis sativa (CLS) and 5-epi-aristolochene synthase (TEAS) from Nicotiana tabacum. They showed significant substrate flexibility towards non-natural prenyl diphosphates to form novel terpenoids, including core oxa- and thia-heterocycles and alkyne-modified terpenoids. We elucidated the structures of five novel monoterpene-analogues and a known sesquiterpene-analogue. These results reflected the terpene synthases′ ability and promiscuity to broaden the pool of terpenoids with structurally complex analogues. Docking studies highlight an on-off conversion of the unnatural substrates.

Publications

Rainer, J.; Vicini, A.; Salzer, L.; Stanstrup, J.; Badia, J. M.; Neumann, S.; Stravs, M. A.; Verri Hernandes, V.; Gatto, L.; Gibb, S.; Witting, M.; A modular and expandable ecosystem for metabolomics data annotation in R Metabolites 12 173 (2022) DOI: 10.3390/metabo12020173
  • Abstract
  • Internet
  • BibText
  • RIS

Liquid chromatography-mass spectrometry (LC-MS)-based untargeted metabolomics experiments have become increasingly popular because of the wide range of metabolites that can be analyzed and the possibility to measure novel compounds. LC-MS instrumentation and analysis conditions can differ substantially among laboratories and experiments, thus resulting in non-standardized datasets demanding customized annotation workflows. We present an ecosystem of R packages, centered around the MetaboCoreUtils, MetaboAnnotation and CompoundDb packages that together provide a modular infrastructure for the annotation of untargeted metabolomics data. Initial annotation can be performed based on MS1 properties such as m/z and retention times, followed by an MS2-based annotation in which experimental fragment spectra are compared against a reference library. Such reference databases can be created and managed with the CompoundDb package. The ecosystem supports data from a variety of formats, including, but not limited to, MSP, MGF, mzML, mzXML, netCDF as well as MassBank text files and SQL databases. Through its highly customizable functionality, the presented infrastructure allows to build reproducible annotation workflows tailored for and adapted to most untargeted LC-MS-based datasets. All core functionality, which supports base R data types, is exported, also facilitating its re-use in other R packages. Finally, all packages are thoroughly unit-tested and documented and are available on GitHub and through Bioconductor.

Publications

Pourhassan N., Z.; Cui, H.; Khosa, S.; Davari, M. D.; Jaeger, K.; Smits, S. H. J.; Schwaneberg, U.; Schmitt, L.; Optimized hemolysin Type 1 secretion system in Escherichia coli by directed evolution of the Hly enhancer fragment and including a terminator region ChemBioChem 23 e202100702 (2022) DOI: 10.1002/cbic.202100702
  • Abstract
  • Internet
  • BibText
  • RIS

Type 1 secretion systems (T1SS) have a relatively simple architecture compared to other classes of secretion systems and therefore, are attractive to be optimized by protein engineering. Here, we report a KnowVolution campaign for the hemolysin (Hly) enhancer fragment, an untranslated region upstream of the hlyA gene, of the hemolysin T1SS of Escherichia coli to enhance its secretion efficiency. The best performing variant of the Hly enhancer fragment contained five nucleotide mutations at  five positions (A30U, A36U, A54G, A81U, and A116U) resulted in a 2-fold increase in the secretion level of a model lipase fused to the secretion carrier HlyA1. Computational analysis suggested that altered affinity to the generated enhancer fragment towards the S1 ribosomal protein contributes to the enhanced secretion levels. Furthermore, we demonstrate that involving a native terminator region along with the generated Hly enhancer fragment increased the secretion levels of the Hly system up to 5-fold.

  • 1
  • 2
  • 3
  • 4
  • 5

Print

  • IPB Halle
  • News
  • Lectures
  • Publications
  • Public Tendering
  • IPB Remote & Mail
  • Imprint
  • Data Protection
  • Accessibility
  • Die Leibniz-Gemeinschaft
  • Wege zu einer pflanzenbasierten Wirtschaft
  • Martin-Luther Universität Halle
  • Erfolgsfaktor Familie
  • TOTAL E-QUALITY
  • Research
    • Research Mission and Profile

    • Molecular Signal Processing

    • Bioorganic Chemistry

    • Biochemistry of Plant Interactions

    • Cell and Metabolic Biology

    • Independent Junior Research Groups

    • Program Center MetaCom

    • Publications

    • Good Scientific Practice

    • Research Funding

    • Networks and Collaborative Projects

    • Symposia and Colloquia

    • Alumni Research Groups

  • Infrastructure
    • Databases and Tools

    • Technical Resources

    • Imaging Unit

    • Greenhouses and Phytochambers

    • Library Services

  • Institute
    • Organizational Chart

    • Management and Boards

    • Administration and Infrastructure

    • Energy Management

    • Diversity, Family and Equality

    • Public Tendering

    • Patents and Licensing

    • The IPB Welcoming Culture

    • Guest Houses

    • IPB Site Map

    • Brief IPB History

    • Alumni Network

  • Career
    • Data protection information for applicants

    • PhD Program

    • Postdocs

    • Berufsausbildung

  • Public Relations
    • News

    • News Ticker Science

    • Press Releases

    • IPB Pressespiegel

    • Lange Nacht, die Wissen schafft

    • IPB Newsletter

    • Printed / Information Material

    • Scientific Reports / Research Highlights

    • Events

    • Cover Art

    • Citizen Science: Pilzberatung

  • IPB Remote & Mail