logo ipb
logo ipb mobile
x
  • Deutsch
  • English
Login
  • Research
    • Research Mission and Profile

    • Molecular Signal Processing

      • Secretariat & All Staff
      • Technical Resources
      • Publications
      • Research Groups
        • Nutrient Sensing
          • Projects
          • Staff
          • Publications
          • Collaborations
        • Symbiosis Signaling
          • Projects
          • Staff
          • Publications
          • Collaborations
        • Jasmonate Signaling
          • Projects
          • Staff
          • Publications
          • Collaborations
    • Bioorganic Chemistry

      • Secretariat & All Staff
      • Technical Resources
      • Publications
      • Research Groups
        • Bioactives
          • Projects
          • Staff
          • Publications
          • Collaborations
        • Natural Products & Metabolomics
          • Projects
          • Staff
          • Publications
          • Collaborations
        • Biotechnology
          • Projects
          • Staff
          • Publications
          • Collaborations
        • Biofunctional Synthesis
          • Projects
          • Staff
          • Publications
          • Collaborations
        • Computational Chemistry
          • Projects
          • Staff
          • Publications
          • Collaborations
        • Data & Resources
          • Projects
          • Staff
          • Publications
          • Collaborations
    • Biochemistry of Plant Interactions

      • Secretariat & All Staff
      • Technical Resources
      • Publications
      • Research Groups
        • Calcium-dependent Protein Kinases
          • Projects
          • Staff
          • Publications
          • Collaborations
        • Cellular Signaling
          • Projects
          • Staff
          • Publications
          • Collaborations
        • Nuclear Processes in Plant Defense
          • Projects
          • Staff
          • Publications
          • Collaborations
    • Cell and Metabolic Biology

      • Secretariat & All Staff
      • Technical Resources
      • Publications
      • Research Groups
        • Glandular Trichomes and Isoprenoid Biosynthesis
          • Projects
          • Staff
          • Publications
          • Collaborations
        • Jasmonate Function & Mycorrhiza
          • Projects
          • Staff
          • Publications
          • Collaborations
        • Phenylpropanoid Metabolism
          • Projects
          • Staff
          • Publications
          • Collaborations
        • Synthetic Biology
          • Projects
          • Staff
          • Publications
          • Collaborations
    • Independent Junior Research Groups

      • Research Groups
        • Receptor Biochemistry
          • Projects
          • Staff
          • Publications
          • Collaborations
    • Program Center MetaCom

      • Secretariat & All staff
      • Publikationen
      • Our Equipment
      • Research Groups
        • Metabolomics Facility
          • Projects
          • Staff
          • Publications
          • Methods
        • MetaCom Analytical Laboratory
          • Projects
          • Staff
          • Publications
          • Methods
        • Computational Plant Biochemistry
          • Projects
          • Staff
          • Publications
          • Collaborations
        • Biochemical Genetics of Metabolic Plasticity
          • Projects
          • Staff
          • Publications
          • Collaborations
    • Publications

    • Good Scientific Practice

    • Research Funding

    • Networks and Collaborative Projects

      • Collaborative Projects as Coordinator
        • Completed Projects as Coordinator
      • Collaborative Projects as Partner
        • Completed Projects as Partner
      • Networks
    • Symposia and Colloquia

      • Lectures
        • IPB Seminars
      • Leibniz Plant Biochemistry Symposia
    • Alumni Research Groups

      • Research Groups
        • Auxin Signaling
          • Projects
          • Publications
        • Bioorganic Chemistry
          • Projects
          • Publications
        • Designer Glycans
          • Projects
          • Publications
        • Jasmonate Mode of Action
          • Publications
        • Protein Recognition and Degradation
          • Projects
          • Publications
        • Regulatory RNAs (MLU-associated group)
          • Projects
          • Publications
        • Signal Integration
          • Projects
          • Publications
        • Ubiquitination in Immunity
          • Projects
          • Publications
        • Cellular Coordination
          • Projects
          • Publications
  • Infrastructure
    • Databases and Tools

      • XCMS
      • Rdisop
      • CAMERA
      • MetShot
      • MassBank
      • MetFrag
      • MetFamily
      • PaCeQuant
      • CytoskeletonAnalyzer
      • GoldenMutagenesis
      • cisHighlight
      • FlagScreen
      • RootDetection
    • Technical Resources

    • Imaging Unit

    • Greenhouses and Phytochambers

    • Library Services

      • OPAC
      • Electronic Journals Library
      • Service for Employees
  • Institute
    • Organizational Chart

    • Management and Boards

      • Board of Trustees
      • Scientific Advisory Board
      • IPB Management / Board of Directors
      • Scientific Council
      • Authorized Representatives of the IPB
      • Staff Council
      • Statutes
    • Administration and Infrastructure

      • Secretariat & All Staff
      • Working Groups
        • Human Resources
        • Finance & Accounting
        • Purchasing
        • IT & Technical Support
        • Experimental Nursery
        • Facility Management
        • Library
        • Digitalization
    • Energy Management

      • Objectives and Measures
      • Energy Management Team
    • Diversity, Family and Equality

    • Public Tendering

    • Patents and Licensing

    • The IPB Welcoming Culture

    • Guest Houses

    • IPB Site Map

    • Brief IPB History

      • Bildergalerie zur Historie
      • Alte Filmsequenzen zum Institut
      • Historischer Massenspektrograph
    • Alumni Network

      • The IPB as a career launching pad
  • Career
    • Data protection information for applicants

    • PhD Program

      • PhD Student Representatives
      • DoCou - Doctoral Training Courses
      • PSSC
    • Postdocs

    • Berufsausbildung

  • Public Relations
    • News

      • 2024
      • 2023
      • 2022
      • Archiv Aktuelles
        • 2021
        • 2020
        • 2019
        • 2018
        • 2017
        • 2016
        • 2015
        • 2014
        • vor 2014
    • News Ticker Science

      • News Ticker 2024
      • News Ticker 2023
      • News Ticker 2022
      • News Ticker Archive
        • News Ticker 2021
        • News Ticker 2020
        • News Ticker 2019
    • Press Releases

      • 2024
      • 2023
      • 2022
      • Archive Press Releases
        • 2021
        • 2020
        • 2019
        • 2018
        • 2017
        • 2016
        • 2015
        • 2014
        • 2013
        • 2012
        • 2011
        • 2010
        • 2009
        • 2008
        • 2007
        • 2006
        • 2005
        • 2004
        • 2003
        • 2002
    • IPB Pressespiegel

    • Lange Nacht, die Wissen schafft

      • 2024 Long Night of Sciences
      • 2022 Long Night of Sciences
    • IPB Newsletter

    • Printed / Information Material

    • Scientific Reports / Research Highlights

    • Events

      • 2024 Leibniz Plant Biochemistry Symposium
    • Cover Art

    • Citizen Science: Pilzberatung

      • Das Reich der Pilze
      • Pilzberatung
      • Forschung an Pilzen
  • Contact
    • Directions for Visitors

    • Staff Directory

    • Imprint

    • Data Protection

    • Accessibility

  1. IPB Halle
  2. Research
  3. Publications

    • Research Mission and Profile
    • Trenner 0
    • Molecular Signal Processing
      • Secretariat & All Staff
      • Technical Resources
      • Publications
      • Research Groups
        • Nutrient Sensing
        • Symbiosis Signaling
        • Jasmonate Signaling
    • Bioorganic Chemistry
      • Secretariat & All Staff
      • Technical Resources
      • Publications
      • Research Groups
        • Bioactives
        • Natural Products & Metabolomics
        • Biotechnology
        • Biofunctional Synthesis
        • Computational Chemistry
        • Data & Resources
    • Biochemistry of Plant Interactions
      • Secretariat & All Staff
      • Technical Resources
      • Publications
      • Research Groups
        • Calcium-dependent Protein Kinases
        • Cellular Signaling
        • Nuclear Processes in Plant Defense
    • Cell and Metabolic Biology
      • Secretariat & All Staff
      • Technical Resources
      • Publications
      • Research Groups
        • Glandular Trichomes and Isoprenoid Biosynthesis
        • Jasmonate Function & Mycorrhiza
        • Phenylpropanoid Metabolism
        • Synthetic Biology
    • Independent Junior Research Groups
      • Research Groups
        • Receptor Biochemistry
    • Program Center MetaCom
      • Secretariat & All staff
      • Publikationen
      • Our Equipment
      • Research Groups
        • Metabolomics Facility
        • MetaCom Analytical Laboratory
        • Computational Plant Biochemistry
        • Biochemical Genetics of Metabolic Plasticity
    • Trenner 1
    • Publications
    • Good Scientific Practice
    • Research Funding
    • Trenner
    • Networks and Collaborative Projects
      • Collaborative Projects as Coordinator
        • Completed Projects as Coordinator
      • Collaborative Projects as Partner
        • Completed Projects as Partner
      • Networks
    • Symposia and Colloquia
      • Lectures
        • IPB Seminars
      • Leibniz Plant Biochemistry Symposia
    • Trenner
    • Alumni Research Groups
      • Research Groups
        • Auxin Signaling
        • Bioorganic Chemistry
        • Designer Glycans
        • Jasmonate Mode of Action
        • Protein Recognition and Degradation
        • Regulatory RNAs (MLU-associated group)
        • Signal Integration
        • Ubiquitination in Immunity
        • Cellular Coordination

Advanced Search

  • Type of publication
    • Publication 67
  • Year
    • 2004 3
      2005 3
      2006 3
      2008 6
      2012 3
      2015 2
      2016 6
      2017 6
      2018 4
      2019 5
      2020 6
      2021 5
      2022 7
      2023 7
      2024 1
  • Journal / Volume / Preprint Server Sorted by frequency and by alphabetical order
    • Phytochemistry 366
      Plant Physiol. 231
      Plant J. 220
      Planta 159
      bioRxiv 155
      Plant Cell 124
      New Phytol. 88
      J. Biol. Chem. 87
      FEBS Lett. 85
      0 84
      Vietnam J. Chem. 76
      J. Exp. Bot. 70
      Front. Plant Sci. 68
      PLOS ONE 62
      Proc. Natl. Acad. Sci. U.S.A. 62
      J. Plant Physiol. 57
      Tetrahedron Lett. 52
      Angew. Chem. Int. Ed. 51
      Plant Cell Physiol. 46
      Angew. Chem. 45
      Mol. Plant Microbe Interact. 45
      Trends Plant Sci. 43
      Methods Mol. Biol. 42
      Int. J. Mol. Sci. 39
      J. Org. Chem. 37
      Plant Signal Behav. 36
      Plant Mol. Biol. 34
      Molecules 33
      Synthesis 33
      Anal. Bioanal. Chem. 32
      Nat. Prod. Commun. 32
      Curr. Opin. Plant Biol. 31
      Biol. Chem. 30
      J. Nat. Prod. 30
      Metabolomics 30
      Tetrahedron 30
      Biochem. Syst. Ecol. 29
      Chem. Commun. 29
      J. Agr. Food Chem. 29
      Plant Cell Environ. 29
      Planta Med. 29
      ChemBioChem 28
      Org. Biomol. Chem. 28
      Eur. J. Org. Chem. 27
      Synlett 26
      BMC Plant Biol. 25
      Z. Naturforsch. C 25
      Anal. Chem. 24
      Theor. Appl. Genet. 24
      BMC Bioinformatics 23
      J. Mass Spectrom. 22
      Mycorrhiza 22
      Phytochem. Anal. 22
      Beilstein J. Org. Chem. 21
      Mol. Plant Pathol. 21
      Plant Growth Regul. 21
      Proteomics 21
      Sci. Rep. 21
      Eur. J. Biochem. 18
      J. Cheminform. 18
      Metabolites 18
      Nat. Commun. 18
      Pharmazie 18
      Plant Biol. 18
      Curr. Biol. 17
      Org. Lett. 17
      Plants 17
      Fitoterapia 16
      J. Med. Chem. 16
      Mol. Plant 16
      Physiol. Plant. 16
      Science 16
      Amino Acids 15
      Anal. Biochem. 15
      ChemRxiv 15
      Eur. J. Med. Chem. 15
      Food Chem. 15
      Nat. Prod. Res. 15
      Nature 15
      Tetrahedron: Asymmetry 15
      Biologie in unserer Zeit 14
      Chem. Biodivers. 14
      J. Am. Chem. Soc. 14
      J. Mol. Model. 14
      J. Plant Growth Regul. 14
      J. Proteome Res. 14
      Nat. Chem. Biol. 14
      Plant Sci. 14
      BIOspektrum 13
      Mol. Cell. Proteomics 13
      Organometallics 13
      Adv. Exp. Med. Biol. 12
      Biochem. Soc. Trans. 12
      Biochimie 12
      ChemCatChem 12
      EMBO J. 12
      J. Mol. Biol. 12
      Nucleic Acids Res. 12
      Rec. Nat. Prod. 12
      Dalton Trans. 11
  • Author Sorted by frequency and by alphabetical order
    • Frolov, A. 16
      Wessjohann, L. A. 16
      Brandt, W. 15
      Soboleva, A. 9
      Grishina, T. 8
      Medvedev, S. 8
      Vikhnina, M. 8
      Smolikova, G. 7
      Davari, M. D. 5
      Neumann, S. 5
      Weissenborn, M. J. 5
      Wessjohann, L. 5
      Bilova, T. 4
      Hause, B. 4
      Mönchgesang, S. 4
      Scheel, D. 4
      Strehmel, N. 4
      Wasternack, C. 4
      Bräuer, L. 3
      Dessoy, M. A. 3
      Eubel, J. 3
      Feussner, I. 3
      Fulhorst, M. 3
      Gao, W. 3
      Gromer, S. 3
      Gummadova, J. 3
      Heuts, D. P. H. M. 3
      Hoehenwarter, W. 3
      Hussain, H. 3
      Leonova, T. 3
      Levy, C. 3
      Lukasheva, E. 3
      Olkhov, R. V. 3
      Schulze, D. 3
      Scrutton, N. S. 3
      Shaw, A. M. 3
      Shumilina, J. 3
      Tsarev, A. 3
      Zakharova, S. 3
      Zenk, M. H. 3
      Zhukov, V. A. 3
      Ziegler, J. 3
      Antonova, K. 2
      Babakov, V. 2
      Balcke, G. 2
      Balcke, G. U. 2
      Darimont, D. 2
      Dolgikh, E. 2
      Günl, M. 2
      Hauer, B. 2
      Herklotz, S. 2
      Ihling, C. 2
      Kaluđerović, G. N. 2
      Kim, A. 2
      Krüger, S. 2
      Llaudet, E. C. 2
      Matiychyn, I. 2
      Mavropolo-Stolyarenko, G. 2
      Morgan, I. 2
      Peters, K. 2
      Porzel, A. 2
      Samba, R. 2
      Schmidt, M. H.-W. 2
      Schmidt, R. 2
      Schwaneberg, U. 2
      Stelzle, M. 2
      Tikhonovich, I. 2
      Tikhonovich, I. A. 2
      Treutler, H. 2
      Trutschel, D. 2
      Usadel, B. 2
      Voiniciuc, C. 2
      Westermann, B. 2
      Westphal, L. 2
      Yang, B. 2
      Abel, S. 1
      Alba, A. 1
      Ali El Enshasy, H. 1
      Alka, O. 1
      Alpízar-Pedraza, D. 1
      Ansorge-Schumacher, M. 1
      Arnold, N. 1
      Bajaj, P. 1
      Baldensperger, T. 1
      Bankin, M. 1
      Bienstein, M. 1
      Bin Ware, I. 1
      Birkemeyer, C. 1
      Bruelheide, H. 1
      Bureiko, K. 1
      Calf, O. W. 1
      Casale, A. M. 1
      Chutia, R. 1
      Cirka, H. 1
      Costantino, P. 1
      Cui, H. 1
      Davari, M. 1
      Demidchik, V. 1
      Dhar, D. 1
      Didio, A. 1
  • Year
  • Type of publication
Search narrowed by: Journal / Volume / Preprint Server Sorted by frequency and by alphabetical order: Int. J. Mol. Sci. Journal / Volume / Preprint Server Sorted by frequency and by alphabetical order: ChemBioChem Remove all filters
Displaying results 1 to 10 of 67.
  • Results as:
  • Print view
  • Endnote (RIS)
  • BibTeX
  • Table: CSV | HTML
Results per page:
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7

Publications

Struwe, H.; Droste, J.; Dhar, D.; Davari, M. D.; Kirschning, A.; Chemoenzymatic synthesis of a new germacrene derivative named germacrene F ChemBioChem 25 e202300599 (2024) DOI: 10.1002/cbic.202300599
  • Abstract
  • Internet
  • BibText
  • RIS

The new farnesyl pyrophosphate (FPP) derivative with a shifted olefinic double bond from C6‐C7 to C7‐C8 is accepted and converted by the sesquiterpene cyclases protoilludene synthase (Omp7) as well as viridiflorene synthase (Tps32). In both cases, a so far unknown germacrene derivative was found to be formed, which we name “germacrene F”. Both cases are examples in which a modification around the central olefinic double bond in FPP leads to a change in the mode of initial cyclization (from 1→11 to 1→10). For Omp7 a rationale for this behaviour was found by carrying out molecular docking studies. Temperature‐dependent NMR experiments, accompanied by NOE studies, show that germacrene F adopts a preferred mirror‐symmetric conformation with both methyl groups oriented in the same directions in the cyclodecane ring.

Publications

Vasco, A. V.; Méndez, Y.; González, C.; Pérez, C. S.; Reguera, L.; Wessjohann, L. A.; Rivera, D. G.; Advancing multicomponent strategies to macrobicyclic peptides ChemBioChem 24 e202300229 (2023) DOI: 10.1002/cbic.202300229
  • Abstract
  • Internet
  • BibText
  • RIS

Macrocyclization of peptides is typically used to fix specific bioactive conformations and improve their pharmacological properties. Recently, macrobicyclic peptides have received special attention owing to their capacity to mimic protein structures or be key components of peptide-drug conjugates. Here, we describe the development of novel synthetic strategies for two distinctive types of peptide macrobicycles. A multicomponent macrocyclo-dimerization approach is introduced for the production of interconnected β-turns, allowing two macrocyclic rings to be formed and dimerized in one pot. Also, an on-resin double stapling strategy is described for the assembly of lactam-bridged macrobicycles with stable tertiary folds.

Publications

Rodriguez, A.; Martell-Huguet, E. M.; González-García, M.; Alpízar-Pedraza, D.; Alba, A.; Vazquez, A. A.; Grieshober, M.; Spellerberg, B.; Stenger, S.; Münch, J.; Kissmann, A.-K.; Rosenau, F.; Wessjohann, L. A.; Wiese, S.; Ständker, L.; Otero-González, A. J.; Identification and characterization of three new antimicrobial peptides from the marine mollusk Nerita versicolor (Gmelin, 1791) Int. J. Mol. Sci. 24 3852 (2023) DOI: 10.3390/ijms24043852
  • Abstract
  • Internet
  • BibText
  • RIS

Mollusks have been widely investigated for antimicrobial peptides because their humoral defense against pathogens is mainly based on these small biomolecules. In this report, we describe the identification of three novel antimicrobial peptides from the marine mollusk Nerita versicolor. A pool of N. versicolor peptides was analyzed with nanoLC-ESI-MS-MS technology, and three potential antimicrobial peptides (Nv-p1, Nv-p2 and Nv-p3) were identified with bioinformatical predictions and selected for chemical synthesis and evaluation of their biological activity. Database searches showed that two of them show partial identity to histone H4 peptide fragments from other invertebrate species. Structural predictions revealed that they all adopt a random coil structure even when placed near a lipid bilayer patch. Nv-p1, Nv-p2 and Nv-p3 exhibited activity against Pseudomonas aeruginosa. The most active peptide was Nv-p3 with an inhibitory activity starting at 1.5 µg/mL in the radial diffusion assays. The peptides were ineffective against Klebsiella pneumoniae, Listeria monocytogenes and Mycobacterium tuberculosis. On the other hand, these peptides demonstrated effective antibiofilm action against Candida albicans, Candida parapsilosis and Candida auris but not against the planktonic cells. None of the peptides had significant toxicity on primary human macrophages and fetal lung fibroblasts at effective antimicrobial concentrations. Our results indicate that N. versicolor-derived peptides represent new AMP sequences and have the potential to be optimized and developed into antibiotic alternatives against bacterial and fungal infections.

Publications

Rajakumara, E.; Saniya, D.; Bajaj, P.; Rajeshwari, R.; Giri, J.; Davari, M. D.; Hijacking chemical reactions of P450 enzymes for altered chemical reactions and asymmetric synthesis Int. J. Mol. Sci. 24 214 (2023) DOI: 10.3390/ijms24010214
  • Abstract
  • Internet
  • BibText
  • RIS

Cytochrome P450s are heme-containing enzymes capable of the oxidative transformation of a wide range of organic substrates. A protein scaffold that coordinates the heme iron, and the catalytic pocket residues, together, determine the reaction selectivity and regio- and stereo-selectivity of the P450 enzymes. Different substrates also affect the properties of P450s by binding to its catalytic pocket. Modulating the redox potential of the heme by substituting iron-coordinating residues changes the chemical reaction, the type of cofactor requirement, and the stereoselectivity of P450s. Around hundreds of P450s are experimentally characterized, therefore, a mechanistic understanding of the factors affecting their catalysis is increasingly vital in the age of synthetic biology and biotechnology. Engineering P450s can enable them to catalyze a variety of chemical reactions viz. oxygenation, peroxygenation, cyclopropanation, epoxidation, nitration, etc., to synthesize high-value chiral organic molecules with exceptionally high stereo- and regioselectivity and catalytic efficiency. This review will focus on recent studies of the mechanistic understandings of the modulation of heme redox potential in the engineered P450 variants, and the effect of small decoy molecules, dual function small molecules, and substrate mimetics on the type of chemical reaction and the catalytic cycle of the P450 enzymes.

Publications

Pick, L. M.; Wenzlaff, J.; Yousefi, M.; Davari, M.; Ansorge-Schumacher, M.; Lipase‐mediated conversion of protecting group silyl ethers: An unspecific side reaction ChemBioChem 24 e202300384 (2023) DOI: 10.1002/cbic.202300384
  • Abstract
  • Internet
  • BibText
  • RIS

Silyl ether protecting groups are important tools in organic synthesis, ensuring selective reactions of hydroxyl functional groups. Enantiospecific formation or cleavage could simultaneously enable the resolution of racemic mixtures and thus significantly increase the efficiency of complex synthetic pathways. Based on reports that lipases, which today are already particularly important tools in chemical synthesis, can catalyze the enantiospecific turnover of trimethylsilanol (TMS)-protected alcohols, the goal of this study was to determine the conditions under which such a catalysis occurs. Through detailed experimental and mechanistic investigation, we demonstrated that although lipases mediate the turnover of TMS-protected alcohols, this occurs independently of the known catalytic triad, as this is unable to stabilize a tetrahedral intermediate. The reaction is essentially non-specific and therefore most likely completely independent of the active site. This rules out lipases as catalysts for the resolution of racemic mixtures alcohols through protection or deprotection with silyl groups.

Publications

Manh, M. B.; Ost, C.; Peiter, E.; Hause, B.; Krupinska, K.; Humbeck, K.; WHIRLY1 acts upstream of ABA-related reprogramming of drought-induced gene expression in Barley and affects stress-related histone modifications Int. J. Mol. Sci. 24 6326 (2023) DOI: 10.3390/ijms24076326
  • Abstract
  • Internet
  • BibText
  • RIS

WHIRLY1, a small plant-specific ssDNA-binding protein, dually located in chloroplasts and the nucleus, is discussed to act as a retrograde signal transmitting a stress signal from the chloroplast to the nucleus and triggering there a stress-related gene expression. In this work, we investigated the function of WHIRLY1 in the drought stress response of barley, employing two overexpression lines (oeW1-2 and oeW1-15). The overexpression of WHIRLY1 delayed the drought-stress-related onset of senescence in primary leaves. Two abscisic acid (ABA)-dependent marker genes of drought stress, HvNCED1 and HvS40, whose expression in the wild type was induced during drought treatment, were not induced in overexpression lines. In addition, a drought-related increase in ABA concentration in the leaves was suppressed in WHIRLY1 overexpression lines. To analyze the impact of the gain-of-function of WHIRLY1 on the drought-related reprogramming of nuclear gene expression, RNAseq was performed comparing the wild type and an overexpression line. Cluster analyses revealed a set of genes highly up-regulated in response to drought in the wild type but not in the WHIRLY1 overexpression lines. Among these genes were many stress- and abscisic acid (ABA)-related ones. Another cluster comprised genes up-regulated in the oeW1 lines compared to the wild type. These were related to primary metabolism, chloroplast function and growth. Our results indicate that WHIRLY1 acts as a hub, balancing trade-off between stress-related and developmental pathways. To test whether the gain-of-function of WHIRLY1 affects the epigenetic control of stress-related gene expression, we analyzed drought-related histone modifications in different regions of the promoter and at the transcriptional start sites of HvNCED1 and HvS40. Interestingly, the level of euchromatic marks (H3K4me3 and H3K9ac) was clearly decreased in both genes in a WHIRLY1 overexpression line. Our results indicate that WHIRLY1, which is discussed to act as a retrograde signal, affects the ABA-related reprogramming of nuclear gene expression during drought via differential histone modifications.

Publications

Eichhorn, T.; Kolbe, F.; Mišić, S.; Dimić, D.; Morgan, I.; Saoud, M.; Milenković, D.; Marković, Z.; Rüffer, T.; Dimitrić Marković, J.; Kaluđerović, G. N.; Synthesis, crystallographic structure, theoretical analysis, molecular docking studies, and biological activity evaluation of Binuclear Ru(II)-1-Naphthylhydrazine Complex Int. J. Mol. Sci. 24 689 (2023) DOI: 10.3390/ijms24010689
  • Abstract
  • Internet
  • BibText
  • RIS

Ruthenium(II)–arene complexes have gained significant research interest due to their possible application in cancer therapy. In this contribution two new complexes are described, namely [{RuCl(η6-p-cymene)}2(μ-Cl)(μ-1-N,N′-naphthyl)]X (X = Cl, 1; PF6, 2), which were fully characterized by IR, NMR, and elemental microanalysis. Furthermore, the structure of 2 in the solid state was determined by a single crystal X-ray crystallographic study, confirming the composition of the crystals as 2·2MeOH. The Hirshfeld surface analysis was employed for the investigation of interactions that govern the crystal structure of 2·2MeOH. The structural data for 2 out of 2·2MeOH was used for the theoretical analysis of the cationic part [{RuCl(η6-p-cymene)}2(μ-Cl)(μ-1-N,N′-naphthyl)]+ (2a) which is common to both 1 and 2. The density functional theory, at B3LYP/6-31+G(d,p) basis set for H, C, N, and Cl atoms and LanL2DZ for Ru ions, was used for the optimization of the 2a structure. The natural bond orbital and quantum theory of atoms in molecules analyses were employed to quantify the intramolecular interactions. The reproduction of experimental IR and NMR spectra proved the applicability of the chosen level of theory. The binding of 1 to bovine serum albumin was examined by spectrofluorimetry and molecular docking, with complementary results obtained. Compound 1 acted as a radical scavenger towards DPPH• and HO• radicals, along with high activity towards cancer prostate and colon cell lines.

Publications

Bin Ware, I.; Franke, K.; Dube, M.; Ali El Enshasy, H.; Wessjohann, L. A.; Characterization and bioactive potential of secondary metabolites isolated from Piper sarmentosum Roxb. Int. J. Mol. Sci. 24 1328 (2023) DOI: 10.3390/ijms24021328
  • Abstract
  • Internet
  • BibText
  • RIS

Piper sarmentosum Roxb. (Piperaceae) is a traditional medicinal plant in South-East Asian countries. The chemical investigation of leaves from this species resulted in the isolation of three previously not described compounds, namely 4″-(3-hydroxy-3-methylglutaroyl)-2″-β-D-glucopyranosyl vitexin (1), kadukoside (2), and 6-O-trans-p-coumaroyl-D-glucono-1,4-lactone (3), together with 31 known compounds. Of these known compounds, 21 compounds were isolated for the first time from P. sarmentosum. The structures were established by 1D and 2D NMR techniques and HR-ESI-MS analyses. The compounds were evaluated for their anthelmintic (Caenorhabditis elegans), antifungal (Botrytis cinerea, Septoria tritici and Phytophthora infestans), antibacterial (Aliivibrio fischeri) and cytotoxic (PC-3 and HT-29 human cancer cells lines) activities. Methyl-3-(4-methoxyphenyl)propionate (8), isoasarone (12), and trans-asarone (15) demonstrated anthelmintic activity with IC50 values between 0.9 and 2.04 mM. Kadukoside (2) was most active against S. tritici with IC50 at 5.0 µM and also induced 94% inhibition of P. infestans growth at 125 µM. Trans-asarone (15), piperolactam A (23), and dehydroformouregine (24) displayed a dose-dependent effect against B. cinerea from 1.5 to 125 µM up to more than 80% inhibition. Paprazine (19), cepharadione A (21) and piperolactam A (23) inhibited bacterial growth by more than 85% at 100 µM. Only mild cytotoxic effects were observed.

Publications

Bienstein, M.; Minond, D.; Schwaneberg, U.; Davari, M. D.; Yildiz, D.; In silico and experimental ADAM17 kinetic modeling as basis for future screening system for modulators Int. J. Mol. Sci. 23 1368 (2022) DOI: 10.3390/ijms23031368
  • Abstract
  • Internet
  • BibText
  • RIS

Understanding the mechanisms of modulators’ action on enzymes is crucial for optimizing and designing pharmaceutical substances. The acute inflammatory response, in particular, is regulated mainly by a disintegrin and metalloproteinase (ADAM) 17. ADAM17 processes several disease mediators such as TNFα and APP, releasing their soluble ectodomains (shedding). A malfunction of this process leads to a disturbed inflammatory response. Chemical protease inhibitors such as TAPI-1 were used in the past to inhibit ADAM17 proteolytic activity. However, due to ADAM17′s broad expression and activity profile, the development of active-site-directed ADAM17 inhibitor was discontinued. New ‘exosite’ (secondary substrate binding site) inhibitors with substrate selectivity raised the hope of a substrate-selective modulation as a promising approach for inflammatory disease therapy. This work aimed to develop a high-throughput screen for potential ADAM17 modulators as therapeutic drugs. By combining experimental and in silico methods (structural modeling and docking), we modeled the kinetics of ADAM17 inhibitor. The results explain ADAM17 inhibition mechanisms and give a methodology for studying selective inhibition towards the design of pharmaceutical substances with higher selectivity.

Publications

Hussain, H.; Prof. Ludger Wessjohann: A lifelong career dedicated to a remarkable service in “Natural products sciences” Int. J. Mol. Sci. 23 5440 (2022) DOI: 10.3390/ijms23105440
  • Internet
  • BibText
  • RIS

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7

Print

  • IPB Halle
  • News
  • Lectures
  • Publications
  • Public Tendering
  • IPB Remote & Mail
  • Imprint
  • Data Protection
  • Accessibility
  • Die Leibniz-Gemeinschaft
  • Wege zu einer pflanzenbasierten Wirtschaft
  • Martin-Luther Universität Halle
  • Erfolgsfaktor Familie
  • TOTAL E-QUALITY
  • Research
    • Research Mission and Profile

    • Molecular Signal Processing

    • Bioorganic Chemistry

    • Biochemistry of Plant Interactions

    • Cell and Metabolic Biology

    • Independent Junior Research Groups

    • Program Center MetaCom

    • Publications

    • Good Scientific Practice

    • Research Funding

    • Networks and Collaborative Projects

    • Symposia and Colloquia

    • Alumni Research Groups

  • Infrastructure
    • Databases and Tools

    • Technical Resources

    • Imaging Unit

    • Greenhouses and Phytochambers

    • Library Services

  • Institute
    • Organizational Chart

    • Management and Boards

    • Administration and Infrastructure

    • Energy Management

    • Diversity, Family and Equality

    • Public Tendering

    • Patents and Licensing

    • The IPB Welcoming Culture

    • Guest Houses

    • IPB Site Map

    • Brief IPB History

    • Alumni Network

  • Career
    • Data protection information for applicants

    • PhD Program

    • Postdocs

    • Berufsausbildung

  • Public Relations
    • News

    • News Ticker Science

    • Press Releases

    • IPB Pressespiegel

    • Lange Nacht, die Wissen schafft

    • IPB Newsletter

    • Printed / Information Material

    • Scientific Reports / Research Highlights

    • Events

    • Cover Art

    • Citizen Science: Pilzberatung

  • IPB Remote & Mail