logo ipb
logo ipb mobile
x
  • Deutsch
  • English
Login
  • Research
    • Research Mission and Profile

    • Molecular Signal Processing

      • Secretariat & All Staff
      • Technical Resources
      • Publications
      • Research Groups
        • Nutrient Sensing
          • Projects
          • Staff
          • Publications
          • Collaborations
        • Symbiosis Signaling
          • Projects
          • Staff
          • Publications
          • Collaborations
        • Jasmonate Signaling
          • Projects
          • Staff
          • Publications
          • Collaborations
    • Bioorganic Chemistry

      • Secretariat & All Staff
      • Technical Resources
      • Publications
      • Research Groups
        • Bioactives
          • Projects
          • Staff
          • Publications
          • Collaborations
        • Natural Products & Metabolomics
          • Projects
          • Staff
          • Publications
          • Collaborations
        • Biotechnology
          • Projects
          • Staff
          • Publications
          • Collaborations
        • Biofunctional Synthesis
          • Projects
          • Staff
          • Publications
          • Collaborations
        • Computational Chemistry
          • Projects
          • Staff
          • Publications
          • Collaborations
        • Data & Resources
          • Projects
          • Staff
          • Publications
          • Collaborations
    • Biochemistry of Plant Interactions

      • Secretariat & All Staff
      • Technical Resources
      • Publications
      • Research Groups
        • Calcium-dependent Protein Kinases
          • Projects
          • Staff
          • Publications
          • Collaborations
        • Cellular Signaling
          • Projects
          • Staff
          • Publications
          • Collaborations
        • Nuclear Processes in Plant Defense
          • Projects
          • Staff
          • Publications
          • Collaborations
    • Cell and Metabolic Biology

      • Secretariat & All Staff
      • Technical Resources
      • Publications
      • Research Groups
        • Glandular Trichomes and Isoprenoid Biosynthesis
          • Projects
          • Staff
          • Publications
          • Collaborations
        • Jasmonate Function & Mycorrhiza
          • Projects
          • Staff
          • Publications
          • Collaborations
        • Phenylpropanoid Metabolism
          • Projects
          • Staff
          • Publications
          • Collaborations
        • Synthetic Biology
          • Projects
          • Staff
          • Publications
          • Collaborations
    • Independent Junior Research Groups

      • Research Groups
        • Receptor Biochemistry
          • Projects
          • Staff
          • Publications
          • Collaborations
    • Program Center MetaCom

      • Secretariat & All staff
      • Publikationen
      • Our Equipment
      • Research Groups
        • Metabolomics Facility
          • Projects
          • Staff
          • Publications
          • Methods
        • MetaCom Analytical Laboratory
          • Projects
          • Staff
          • Publications
          • Methods
        • Computational Plant Biochemistry
          • Projects
          • Staff
          • Publications
          • Collaborations
        • Biochemical Genetics of Metabolic Plasticity
          • Projects
          • Staff
          • Publications
          • Collaborations
    • Publications

    • Good Scientific Practice

    • Research Funding

    • Networks and Collaborative Projects

      • Collaborative Projects as Coordinator
        • Completed Projects as Coordinator
      • Collaborative Projects as Partner
        • Completed Projects as Partner
      • Networks
    • Symposia and Colloquia

      • Lectures
        • IPB Seminars
      • Leibniz Plant Biochemistry Symposia
    • Alumni Research Groups

      • Research Groups
        • Auxin Signaling
          • Projects
          • Publications
        • Bioorganic Chemistry
          • Projects
          • Publications
        • Designer Glycans
          • Projects
          • Publications
        • Jasmonate Mode of Action
          • Publications
        • Protein Recognition and Degradation
          • Projects
          • Publications
        • Regulatory RNAs (MLU-associated group)
          • Projects
          • Publications
        • Signal Integration
          • Projects
          • Publications
        • Ubiquitination in Immunity
          • Projects
          • Publications
        • Cellular Coordination
          • Projects
          • Publications
  • Infrastructure
    • Databases and Tools

      • XCMS
      • Rdisop
      • CAMERA
      • MetShot
      • MassBank
      • MetFrag
      • MetFamily
      • PaCeQuant
      • CytoskeletonAnalyzer
      • GoldenMutagenesis
      • cisHighlight
      • FlagScreen
      • RootDetection
    • Technical Resources

    • Imaging Unit

    • Greenhouses and Phytochambers

    • Library Services

      • OPAC
      • Electronic Journals Library
      • Service for Employees
  • Institute
    • Organizational Chart

    • Management and Boards

      • Board of Trustees
      • Scientific Advisory Board
      • IPB Management / Board of Directors
      • Scientific Council
      • Authorized Representatives of the IPB
      • Staff Council
      • Statutes
    • Administration and Infrastructure

      • Secretariat & All Staff
      • Working Groups
        • Human Resources
        • Finance & Accounting
        • Purchasing
        • IT & Technical Support
        • Experimental Nursery
        • Facility Management
        • Library
        • Digitalization
    • Energy Management

      • Objectives and Measures
      • Energy Management Team
    • Diversity, Family and Equality

    • Public Tendering

    • Patents and Licensing

    • The IPB Welcoming Culture

    • Guest Houses

    • IPB Site Map

    • Brief IPB History

      • Bildergalerie zur Historie
      • Alte Filmsequenzen zum Institut
      • Historischer Massenspektrograph
    • Alumni Network

      • The IPB as a career launching pad
  • Career
    • Data protection information for applicants

    • PhD Program

      • PhD Student Representatives
      • DoCou - Doctoral Training Courses
      • PSSC
    • Postdocs

    • Berufsausbildung

  • Public Relations
    • News

      • 2024
      • 2023
      • 2022
      • Archiv Aktuelles
        • 2021
        • 2020
        • 2019
        • 2018
        • 2017
        • 2016
        • 2015
        • 2014
        • vor 2014
    • News Ticker Science

      • News Ticker 2024
      • News Ticker 2023
      • News Ticker 2022
      • News Ticker Archive
        • News Ticker 2021
        • News Ticker 2020
        • News Ticker 2019
    • Press Releases

      • 2024
      • 2023
      • 2022
      • Archive Press Releases
        • 2021
        • 2020
        • 2019
        • 2018
        • 2017
        • 2016
        • 2015
        • 2014
        • 2013
        • 2012
        • 2011
        • 2010
        • 2009
        • 2008
        • 2007
        • 2006
        • 2005
        • 2004
        • 2003
        • 2002
    • IPB Pressespiegel

    • Lange Nacht, die Wissen schafft

      • 2024 Long Night of Sciences
      • 2022 Long Night of Sciences
    • IPB Newsletter

    • Printed / Information Material

    • Scientific Reports / Research Highlights

    • Events

      • 2024 Leibniz Plant Biochemistry Symposium
    • Cover Art

    • Citizen Science: Pilzberatung

      • Das Reich der Pilze
      • Pilzberatung
      • Forschung an Pilzen
  • Contact
    • Directions for Visitors

    • Staff Directory

    • Imprint

    • Data Protection

    • Accessibility

  1. IPB Halle
  2. Research
  3. Publications

    • Research Mission and Profile
    • Trenner 0
    • Molecular Signal Processing
      • Secretariat & All Staff
      • Technical Resources
      • Publications
      • Research Groups
        • Nutrient Sensing
        • Symbiosis Signaling
        • Jasmonate Signaling
    • Bioorganic Chemistry
      • Secretariat & All Staff
      • Technical Resources
      • Publications
      • Research Groups
        • Bioactives
        • Natural Products & Metabolomics
        • Biotechnology
        • Biofunctional Synthesis
        • Computational Chemistry
        • Data & Resources
    • Biochemistry of Plant Interactions
      • Secretariat & All Staff
      • Technical Resources
      • Publications
      • Research Groups
        • Calcium-dependent Protein Kinases
        • Cellular Signaling
        • Nuclear Processes in Plant Defense
    • Cell and Metabolic Biology
      • Secretariat & All Staff
      • Technical Resources
      • Publications
      • Research Groups
        • Glandular Trichomes and Isoprenoid Biosynthesis
        • Jasmonate Function & Mycorrhiza
        • Phenylpropanoid Metabolism
        • Synthetic Biology
    • Independent Junior Research Groups
      • Research Groups
        • Receptor Biochemistry
    • Program Center MetaCom
      • Secretariat & All staff
      • Publikationen
      • Our Equipment
      • Research Groups
        • Metabolomics Facility
        • MetaCom Analytical Laboratory
        • Computational Plant Biochemistry
        • Biochemical Genetics of Metabolic Plasticity
    • Trenner 1
    • Publications
    • Good Scientific Practice
    • Research Funding
    • Trenner
    • Networks and Collaborative Projects
      • Collaborative Projects as Coordinator
        • Completed Projects as Coordinator
      • Collaborative Projects as Partner
        • Completed Projects as Partner
      • Networks
    • Symposia and Colloquia
      • Lectures
        • IPB Seminars
      • Leibniz Plant Biochemistry Symposia
    • Trenner
    • Alumni Research Groups
      • Research Groups
        • Auxin Signaling
        • Bioorganic Chemistry
        • Designer Glycans
        • Jasmonate Mode of Action
        • Protein Recognition and Degradation
        • Regulatory RNAs (MLU-associated group)
        • Signal Integration
        • Ubiquitination in Immunity
        • Cellular Coordination

Advanced Search

  • Type of publication
    • Publication 55
      Preprints 14
      Books and chapters 10
  • Year
    • 2008 3
      2009 3
      2011 10
      2012 3
      2013 1
      2014 6
      2015 7
      2016 6
      2017 4
      2018 6
      2019 4
      2020 11
      2021 6
      2022 3
      2023 1
      2024 2
      2025 3
  • Journal / Volume / Preprint Server Sorted by frequency and by alphabetical order
    • PLOS ONE 16
      bioRxiv 14
      Methods Mol. Biol. 10
      Plant Cell 6
      Plant J. 4
      ACS Synth. Biol. 3
      Bioengineered 3
      New Phytol. 3
      Plant Biotechnol. J. 3
      Sci. Rep. 3
      Appl. Environ. Microbiol. 2
      Front. Microbiol. 2
      Nat. Commun. 2
      Commun. Biol. 1
      Curr. Protoc. Mol. Biol. 1
      Front. Plant Sci. 1
      Funct. Integr. Genomics 1
      Mol. Plant 1
      Physiol. Mol. Plant Pathol. 1
      Plant Communications 1
      Plants 1
  • Author Sorted by frequency and by alphabetical order
    • Wessjohann, L. A. 646
      Schmidt, J. 515
      Hause, B. 451
      Wessjohann, L. 439
      Wasternack, C. 388
      Brandt, W. 374
      Porzel, A. 367
      Strack, D. 329
      Scheel, D. 293
      Neumann, S. 226
      Miersch, O. 218
      Arnold, N. 211
      Westermann, B. 172
      Lee, J. 171
      Franke, K. 163
      Feussner, I. 149
      Abel, S. 146
      Kutchan, T. M. 123
      Rosahl, S. 123
      Ziegler, J. 113
      Frolov, A. 112
      Tissier, A. 110
      Hoehenwarter, W. 109
      Quint, M. 108
      Clemens, S. 106
      Vogt, T. 106
      Böttcher, C. 101
      Sung, T. V. 101
      Eschen-Lippold, L. 100
      Adam, G. 99
      Kaluđerović, G. N. 96
      Rivera, D. G. 95
      Farag, M. A. 91
      Kramell, R. 91
      Schliemann, W. 91
      Milkowski, C. 88
      Marillonnet, S. 79
      Stenzel, I. 74
      Hause, G. 71
      Weissenborn, M. J. 68
      Dissmeyer, N. 67
      Nürnberger, T. 66
      Wray, V. 65
      Walter, M. H. 64
      Fester, T. 61
      Trujillo, M. 61
      Baumert, A. 60
      Knogge, W. 59
      Wirthmueller, L. 55
      Davari, M. D. 54
      Braga, A. L. 50
      Gago, S. 48
      Voiniciuc, C. 47
      Bürstenbinder, K. 46
      Hussain, H. 46
      Flores, R. 44
      Parthier, B. 44
      Steinborn, D. 44
      Thuy, T. T. 44
      Delker, C. 43
      Boland, W. 42
      Anh, N. T. H. 41
      Grosse, I. 41
      Pahnke, J. 41
      Westphal, L. 41
      Göbel, C. 39
      Zenk, M. H. 39
      Abbas, M. 38
      Maucher, H. 37
      Nimtz, M. 37
      Schymanski, E. L. 37
      Steinbeck, C. 37
      Strehmel, N. 37
      Maier, W. 36
      Rocca-Serra, P. 36
      Dräger, B. 35
      Schnittger, A. 35
      Wagner, C. 35
      Balcke, G. U. 34
      Grubb, C. D. 34
      Kogel, K.-H. 33
      Ruttkies, C. 33
      Schneider, B. 33
      Schuster, M. 33
      Ali, N. A. A. 32
      Kopka, J. 32
      Salek, R. M. 31
      Schaarschmidt, S. 31
      Schneider, G. 31
      Atzorn, R. 30
      Gasperini, D. 30
      Sansone, S.-A. 30
      Schmidt, H. 30
      Strnad, M. 30
      Teichert, A. 30
      Weichert, H. 30
      von Roepenack-Lahaye, E. 30
      Abdala, G. 29
      Demuth, H.-U. 29
      Frick, S. 29
  • Year
  • Type of publication
Search narrowed by: Author Sorted by frequency and by alphabetical order: Marillonnet, S. Remove all filters
Displaying results 1 to 10 of 79.
  • Results as:
  • Print view
  • Endnote (RIS)
  • BibTeX
  • Table: CSV | HTML
Results per page:
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8

Publications

Benatto Perino, E. H.; Smolka, U.; Gorzolka, K.; Grützner, R.; Marillonnet, S.; Vahabi, K.; Rosahl, S.; The suberin transporter StABCG1 is required for barrier formation in potato leaves Sci. Rep. 15 7930 (2025) DOI: 10.1038/s41598-025-89032-x
  • Abstract
  • Internet
  • BibText
  • RIS

Suberin is a hydrophobic biopolymer that acts as an internal and external diffusion and transpiration barrier in plants. It is involved in two phases of wound healing, i.e. initial closing layer formation and subsequent wound periderm development. Transcriptomic and metabolomic analyses of wounded potato leaf tissue revealed preferential induction of cell wall modifying processes during closing layer formation, accompanied by a highly active defense response. To address the importance of suberin in this process, we generated loss of function mutants by CRISPR-Cas9 editing the suberin transporter gene StABCG1. Both wound-induced StABCG1 transcript levels and suberin formation around wounded leaf tissue were reduced in CRISPR-lines. Moreover, wound-induced tissue damage was characterized by browning of wound-adjacent areas. Transcriptome analyses of these areas revealed up-regulation of genes encoding defense proteins and enzymes of the phenylpropanoid pathway. Levels of hydroxycinnamic acid amides, acting in defense and in cell wall reinforcement, were drastically enhanced in CRISPR compared to control plants. These results suggest that the reduction in suberin formation around wounded tissue leads to a loss of barrier function, resulting in tissue browning due to enhanced exposure to oxygen.

Books and chapters

Marillonnet, S.; Werner, S.; Golden gate cloning of multigene constructs using the modular cloning system MoClo Schindler D. Methods Mol. Biol. 2850 21-39 (2025) ISBN:978-1-0716-4094-4 DOI: 10.1007/978-1-0716-4220-7_2
  • Abstract
  • Internet
  • BibText
  • RIS

Modular cloning systems that rely on type IIS enzymes for DNA assembly have many advantages for construct engineering for biological research and synthetic biology. These systems are simple to use, efficient, and allow users to assemble multigene constructs by performing a series of one-pot assembly steps, starting from libraries of cloned and sequenced parts. The efficiency of these systems also facilitates the generation of libraries of construct variants. We describe here a protocol for assembly of multigene constructs using the modular cloning system MoClo. Making constructs using the MoClo system requires to first define the structure of the final construct to identify all basic parts and vectors required for the construction strategy. The assembly strategy is then defined following a set of standard rules. Multigene constructs are then assembled using a series of one-pot assembly steps with the set of identified parts and vectors.

Books and chapters

Grützner, R.; Marillonnet, S.; Golden gate cloning of MoClo standard parts Schindler D. Methods Mol. Biol. 2850 1-19 (2025) ISBN:978-1-0716-4094-4 DOI: 10.1007/978-1-0716-4220-7_1
  • Abstract
  • Internet
  • BibText
  • RIS

Efficient DNA assembly methods are an essential prerequisite in the field of synthetic biology. Modular cloning systems, which rely on Golden Gate cloning for DNA assembly, are designed to facilitate assembly of multigene constructs from libraries of standard parts through a series of streamlined one-pot assembly reactions. Standard parts consist of the DNA sequence of a genetic element of interest such as a promoter, coding sequence, or terminator, cloned in a plasmid vector. Standard parts for the modular cloning system MoClo, also called level 0 modules, must be flanked by two BsaI restriction sites in opposite orientations and should not contain internal sequences for two type IIS restriction sites, BsaI and BpiI, and optionally for a third type IIS enzyme, BsmBI. We provide here a detailed protocol for cloning of level 0 modules. This protocol requires the following steps: (1) defining the type of part that needs to be cloned, (2) designing primers for amplification, (3) performing polymerase chain reaction (PCR) amplification, (4) cloning of the fragments using Golden Gate cloning, and finally (5) sequencing of the part. For large standard parts, it is preferable to first clone sub-parts as intermediate level-1 constructs. These sub-parts are sequenced individually and are then further assembled to make the final level 0 module.

Publications

Schreiber, T.; Prange, A.; Schäfer, P.; Iwen, T.; Grützner, R.; Marillonnet, S.; Lepage, A.; Javelle, M.; Paul, W.; Tissier, A.; Efficient scar-free knock-ins of several kilobases in plants by engineered CRISPR/Cas endonucleases Mol. Plant 17 824-837 (2024) DOI: 10.1016/j.molp.2024.03.013
  • Abstract
  • Internet
  • BibText
  • RIS

In plants and mammals, non-homologous end-joining is the dominant pathway to repair DNA double strand breaks, making it challenging to generate knock-in events. We identified two groups of exonucleases from the Herpes Virus and the bacteriophage T7 families that conferred an up to 38-fold increase in HDR frequencies when fused to Cas9/Cas12a in a Tobacco mosaic virus-based transient assay in Nicotiana benthamiana. We achieved precise and scar-free insertion of several kilobases of DNA both in transient and stable transformation systems. In Arabidopsis thaliana, fusion of Cas9 to a Herpes Virus family exonuclease leads to 10-fold higher frequencies of knock-ins in the first generation of transformants. In addition, we demonstrate stable and heritable knock-ins of in wheat in 1% of the primary transformants. Our results open perspectives for the routine production of heritable knock-in and gene replacement events in plants.

Publications

Grützner, R.; König, K.; Horn, C.; Engler, C.; Laub, A.; Vogt, T.; Marillonnet, S.; A transient expression tool box for anthocyanin biosynthesis in Nicotiana benthamiana Plant Biotechnol. J. 22 1238-1250 (2024) DOI: 10.1111/pbi.14261
  • Abstract
  • Internet
  • BibText
  • RIS

Transient expression in Nicotiana benthamiana offers a robust platform for the rapid production of complex secondary metabolites. It has proven highly effective in helping identify genes associated with pathways responsible for synthesizing various valuable natural compounds. While this approach has seen considerable success, it has yet to be applied to uncovering genes involved in anthocyanin biosynthetic pathways. This is because only a single anthocyanin, delphinidin 3‐O‐rutinoside, can be produced in N. benthamiana by activation of anthocyanin biosynthesis using transcription factors. The production of other anthocyanins would necessitate the suppression of certain endogenous flavonoid biosynthesis genes while transiently expressing others. In this work, we present a series of tools for the reconstitution of anthocyanin biosynthetic pathways in N. benthamiana leaves. These tools include constructs for the expression or silencing of anthocyanin biosynthetic genes and a mutant N. benthamiana line generated using CRISPR. By infiltration of defined sets of constructs, the basic anthocyanins pelargonidin 3‐O‐glucoside, cyanidin 3‐O‐glucoside and delphinidin 3‐O‐glucoside could be obtained in high amounts in a few days. Additionally, co‐infiltration of supplementary pathway genes enabled the synthesis of more complex anthocyanins. These tools should be useful to identify genes involved in the biosynthesis of complex anthocyanins. They also make it possible to produce novel anthocyanins not found in nature. As an example, we reconstituted the pathway for biosynthesis of Arabidopsis anthocyanin A5, a cyanidin derivative and achieved the biosynthesis of the pelargonidin and delphinidin variants of A5, pelargonidin A5 and delphinidin A5.

Publications

Nietzschmann, L.; Smolka, U.; Perino, E. H. B.; Gorzolka, K.; Stamm, G.; Marillonnet, S.; Bürstenbinder, K.; Rosahl, S.; The secreted PAMP-induced peptide StPIP1_1 activates immune responses in potato Sci. Rep. 13 20534 (2023) DOI: 10.1038/s41598-023-47648-x
  • Abstract
  • Internet
  • BibText
  • RIS

Treatment of potato plants with the pathogen-associated molecular pattern Pep-13 leads to the activation of more than 1200 genes. One of these, StPIP1_1, encodes a protein of 76 amino acids with sequence homology to PAMP-induced secreted peptides (PIPs) from Arabidopsis thaliana. Expression of StPIP1_1 is also induced in response to infection with Phytophthora infestans, the causal agent of late blight disease. Apoplastic localization of StPIP1_1-mCherry fusion proteins is dependent on the presence of the predicted signal peptide. A synthetic peptide corresponding to the last 13 amino acids of StPIP1_1 elicits the expression of the StPIP1_1 gene itself, as well as that of pathogenesis related genes. The oxidative burst induced by exogenously applied StPIP1_1 peptide in potato leaf disks is dependent on functional StSERK3A/B, suggesting that StPIP1_1 perception occurs via a receptor complex involving the co-receptor StSERK3A/B. Moreover, StPIP1_1 induces expression of FRK1 in Arabidopsis in an RLK7-dependent manner. Expression of an RLK from potato with high sequence homology to AtRLK7 is induced by StPIP1_1, by Pep-13 and in response to infection with P. infestans. These observations are consistent with the hypothesis that, upon secretion, StPIP1_1 acts as an endogenous peptide required for amplification of the defense response.

Preprints

Schreiber, T.; Tripathee, S.; Iwen, T.; Prange, A.; Vahabi, K.; Grützner, R.; Horn, C.; Marillonnet, S.; Tissier, A.; DNA double strand breaks lead to de novo transcription and translation of damage-induced long RNAs in planta bioRxiv (2022) DOI: 10.1101/2022.05.11.491484
  • Abstract
  • Internet
  • BibText
  • RIS

DNA double strand breaks (DSBs) are lethal threats that need to be repaired. Although many of the proteins involved in the early steps of DSB repair have been characterized, recent reports indicate that damage induced long and small RNAs also play an important role in DSB repair. Here, using a Nicotiana benthamiana transgenic line originally designed as a reporter for targeted knock-ins, we show that DSBs generated by Cas9 induce the transcription of long stable RNAs (damage-induced long RNAs - dilRNAs) that are translated into proteins. Using an array of single guide RNAs we show that the initiation of transcription takes place in the vicinity of the DSB. Single strand DNA nicks are not able to induce transcription, showing that cis DNA damage-induced transcription is specific for DSBs. Our results support a model in which a default and early event in the processing of DSBs is transcription into RNA which, depending on the genomic and genic context, can undergo distinct fates, including translation into protein, degradation or production of small RNAs. Our results have general implications for understanding the role of transcription in the repair of DSBs and, reciprocally, reveal DSBs as yet another way to regulate gene expression.

Preprints

Schreiber, T.; Tripathee, S.; Iwen, T.; Prange, A.; Vahabi, K.; Grützner, R.; Horn, C.; Marillonnet, S.; Tissier, A.; DNA double strand breaks lead to de novo transcription and translation of damage-induced long RNAs in planta bioRxiv (2022) DOI: 10.1101/2022.05.11.491484
  • Abstract
  • Internet
  • BibText
  • RIS

DNA double strand breaks (DSBs) are lethal threats that need to be repaired. Although many of the proteins involved in the early steps of DSB repair have been characterized, recent reports indicate that damage induced long and small RNAs also play an important role in DSB repair. Here, using a Nicotiana benthamiana transgenic line originally designed as a reporter for targeted knock-ins, we show that DSBs generated by Cas9 induce the transcription of long stable RNAs (damage-induced long RNAs - dilRNAs) that are translated into proteins. Using an array of single guide RNAs we show that the initiation of transcription takes place in the vicinity of the DSB. Single strand DNA nicks are not able to induce transcription, showing that cis DNA damage-induced transcription is specific for DSBs. Our results support a model in which a default and early event in the processing of DSBs is transcription into RNA which, depending on the genomic and genic context, can undergo distinct fates, including translation into protein, degradation or production of small RNAs. Our results have general implications for understanding the role of transcription in the repair of DSBs and, reciprocally, reveal DSBs as yet another way to regulate gene expression.

Publications

Stellmach, H.; Hose, R.; Räde, A.; Marillonnet, S.; Hause, B.; A new set of Golden-Gate-Based organelle marker plasmids for colocalization studies in plants Plants 11 2620 (2022) DOI: 10.3390/plants11192620
  • Abstract
  • Internet
  • BibText
  • RIS

In vivo localization of proteins using fluorescence-based approaches by fusion of the protein of interest (POI) to a fluorescent protein is a cost- and time-effective tool to gain insights into its physiological function in a plant cell. Determining the proper localization, however, requires the co-expression of defined organelle markers (OM). Several marker sets are available but, so far, the procedure requires successful co-transformation of POI and OM into the same cell and/or several cloning steps. We developed a set of vectors containing markers for basic cell organelles that enables the insertion of the gene of interest (GOI) by a single cloning step using the Golden Gate cloning approach and resulting in POI–GFP fusions. The set includes markers for plasma membrane, tonoplast, nucleus, endoplasmic reticulum, Golgi apparatus, peroxisomes, plastids, and mitochondria, all labelled with mCherry. Most of them were derived from well-established marker sets, but those localized in plasma membrane and tonoplast were improved by using different proteins. The final vectors are usable for localization studies in isolated protoplasts and for transient transformation of leaves of Nicotiana benthamiana. Their functionality is demonstrated using two enzymes involved in biosynthesis of jasmonic acid and located in either plastids or peroxisomes.

Publications

Stuttmann, J.; Barthel, K.; Martin, P.; Ordon, J.; Lee Erickson, J.; Herr, R.; Ferik, F.; Kretschmer, C.; Berner, T.; Keilwagen, J.; Marillonnet, S.; Bonas, U.; Highly efficient multiplex editing: one‐shot generation of 8× Nicotiana benthamiana and 12× Arabidopsis mutants Plant J. 106 8-22 (2021) DOI: 10.1111/tpj.15197
  • Abstract
  • Internet
  • BibText
  • RIS

Genome editing by RNA-guided nucleases, such as SpCas9, has been used in numerous different plant species. However, to what extent multiple independent loci can be targeted simultaneously by multiplexing has not been well documented. Here, we developed a toolkit, based on a highly intron-optimized zCas9i gene, which allows assembly of nuclease constructs expressing up to 32 single guide RNAs (sgRNAs). We used this toolkit to explore the limits of multiplexing in two major model species, and report on the isolation of transgene-free octuple (8×) Nicotiana benthamiana and duodecuple (12×) Arabidopsis thaliana mutant lines in a single generation (T1 and T2, respectively). We developed novel counter-selection markers for N. benthamiana, most importantly Sl-FAST2, comparable to the well-established Arabidopsis seed fluorescence marker, and FCY-UPP, based on the production of toxic 5-fluorouracil in the presence of a precursor. Targeting eight genes with an array of nine different sgRNAs and relying on FCY-UPP for selection of non-transgenic T1, we identified N. benthamiana mutant lines with astonishingly high efficiencies: All analyzed plants carried mutations in all genes (approximately 112/116 target sites edited). Furthermore, we targeted 12 genes by an array of 24 sgRNAs in A. thaliana. Efficiency was significantly lower in A. thaliana, and our results indicate Cas9 availability is the limiting factor in such higher-order multiplexing applications. We identified a duodecuple mutant line by a combination of phenotypic screening and amplicon sequencing. The resources and results presented provide new perspectives for how multiplexing can be used to generate complex genotypes or to functionally interrogate groups of candidate genes.

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8

Print

  • IPB Halle
  • News
  • Lectures
  • Publications
  • Public Tendering
  • IPB Remote & Mail
  • Imprint
  • Data Protection
  • Accessibility
  • Die Leibniz-Gemeinschaft
  • Wege zu einer pflanzenbasierten Wirtschaft
  • Martin-Luther Universität Halle
  • Erfolgsfaktor Familie
  • TOTAL E-QUALITY
  • Research
    • Research Mission and Profile

    • Molecular Signal Processing

    • Bioorganic Chemistry

    • Biochemistry of Plant Interactions

    • Cell and Metabolic Biology

    • Independent Junior Research Groups

    • Program Center MetaCom

    • Publications

    • Good Scientific Practice

    • Research Funding

    • Networks and Collaborative Projects

    • Symposia and Colloquia

    • Alumni Research Groups

  • Infrastructure
    • Databases and Tools

    • Technical Resources

    • Imaging Unit

    • Greenhouses and Phytochambers

    • Library Services

  • Institute
    • Organizational Chart

    • Management and Boards

    • Administration and Infrastructure

    • Energy Management

    • Diversity, Family and Equality

    • Public Tendering

    • Patents and Licensing

    • The IPB Welcoming Culture

    • Guest Houses

    • IPB Site Map

    • Brief IPB History

    • Alumni Network

  • Career
    • Data protection information for applicants

    • PhD Program

    • Postdocs

    • Berufsausbildung

  • Public Relations
    • News

    • News Ticker Science

    • Press Releases

    • IPB Pressespiegel

    • Lange Nacht, die Wissen schafft

    • IPB Newsletter

    • Printed / Information Material

    • Scientific Reports / Research Highlights

    • Events

    • Cover Art

    • Citizen Science: Pilzberatung

  • IPB Remote & Mail