- Results as:
- Print view
- Endnote (RIS)
- BibTeX
- Table: CSV | HTML
Publications
Publications
Publications
Books and chapters
Research Mission and Profile
Molecular Signal Processing
Bioorganic Chemistry
Biochemistry of Plant Interactions
Cell and Metabolic Biology
Independent Junior Research Groups
Program Center MetaCom
Publications
Good Scientific Practice
Research Funding
Networks and Collaborative Projects
Symposia and Colloquia
Alumni Research Groups
Publications
Benzylisoquinoline alkaloids constitute a group of about 2,500 structures and are mainly produced by plants of the order Ranunculales. But only the opium poppy, Papaver somniferum, and Papaver setigerum are able to produce morphine. In this study, we started to investigate by gene expression analysis the molecular basis for this exceptional biosynthetic ability. A sequencing project from P. somniferum seedlings was initiated using a method based on the amplified fragment length polymorphism technique that resulted in 849 UniGenes. These cDNAs were analysed on macroarrays for differential expression between morphine-containing P. somniferum plants and eight other Papaver species, which accumulate other benzylisoquinolines instead of morphine. Three cDNAs showing increased expression in P. somniferum compared to all the other Papaver species were identified. Whereas two showed no significant homology to any known protein, one putatively encoded an O-methyltransferase. Analysis of substrate specificity of the heterologously expressed protein and mass spectrometric identification of the enzymatic products identified this protein as S-adenosyl-L-methionine:(R,S)-3′-hydroxy-N-methylcoclaurine 4′-O-methyltransferase (EC 2.1.1.116). Unlike other O-methyltransferases of different positional specificities implicated in benzylisoquinoline metabolism, the enzyme only accepted tetrahydroxylated tetrahydrobenzylisoquinolines as substrates; methylation was tolerated only at the 6-hydroxy position.
Publications
Two new amide-linked conjugates of jasmonic acid, N-[(3R,7R)-(−)-jasmonoyl]-(S)-dopa (3) and N-[(3R,7R)-(−)-jasmonoyl]-dopamine (5), were isolated in addition to the known compound N-[(3R,7R)-(−)-jasmonoyl]-(S)-tyrosine (2) from the methanolic extract of flowers of broad bean (Vicia faba). Their structures were proposed on the basis of spectroscopic data (LC-MS/MS) and chromatographic properties on reversed and chiral phases and confirmed by partial syntheses. Furthermore, tyrosine conjugates of two cucurbic acid isomers (7, 8) were detected and characterized by LC-MS. Crude enzyme preparations from flowers of V. faba hydroxylated both (±)-2 and N-[(3R,7R/3S,7S)-(−)-jasmonoyl]tyramine [(±)-4] to (±)-3 and (±)-5, respectively, suggesting a possible biosynthetic relationship. In addition, a commercial tyrosinase (mushroom) and a tyrosinase-containing extract from hairy roots of red beet exhibited the same catalytic properties, but with different substrate specificities. The conjugates (±)-2, (±)-3, (±)-4, and (±)-5 exhibited in a bioassay low activity to elicit alkaloid formation in comparison to free (±)-jasmonic acid [(±)-1].
Publications
In the present study morphinan, tetrahydrobenzylisoquinoline, benzo[c]phenanthridine, and phthalideisoquinoline alkaloids were determined qualitatively and quantitatively by HPLC and LC-MS analysis in tissues of the Tasmanian Papaver somniferum L. elite cultivar C048-6-14-64. The data were compared with the results from the low-morphine cultivar “Marianne”. In the elite cultivar, 91.2% of the latex alkaloids consist of the three pharmaceutically most valuable alkaloids: morphine, codeine, and thebaine. In the root system, the major alkaloids are sanguinarine/10-hydroxysanguinarine and dihydrosanguinarine/10-hydroxydihydrosanguinarine. In the stems and leaves of C048-6-14-64, the same alkaloids were measured as in the latex. In the stems, a gradient in relative total alkaloid content from the top downward toward the roots was observed. The concentration of morphine was decreasing toward the roots, whereas an increasing gradient from the upper to the lower stem parts was detected for codeine. The relative total alkaloid concentration in leaves remained constant; no gradient was observed. The cultivar “Marianne” displayed a shifted pattern of alkaloid accumulation and reduced levels of total alkaloid. In the condiment cultivar, 80.5% of the alkaloids of the latex consisted of the two phthalideisoquinoline alkaloids narcotoline and noscapine. Only 18.8% of the relative total alkaloid content were morphinan alkaloids. In contrast to the narcotic cultivar, in which the benzo[c]phenanthridines in roots dominated over the morphinan and tetrahydrobenzylisoquinoline alkaloids, the concentration of benzo[c]phenanthridines in “Marianne” was similar to that of morphinan and tetrahydrobenzylisoquinoline alkaloids. These data suggest a differential alkaloid regulation in each cultivar of P. somniferum.
Books and chapters
Opium poppy (Papaver somniferum L.) produces a large variety of isoquinoline alkaloids. The aim of this investigation is to understand the regulation of biosynthesis and the ecological function of the alkaloids in the plant. Agrobacterium-mediated transformations of opium poppy were used to introduce the berberine bridge enzyme cDNA bbe 1 in the antisense orientation into seedling explants. After induction of callus on an appropriate medium, embryos were developed via somatic embryogenesis. After the embryos were developed into plantlets with leaves and roots they were transferred to soil. In this way, forty-nine phenotypically normal T0 plants were produced. Forty-six plants produced viable seeds and were used to produce T1 plants. These plants were then analyzed for the presence of the bbe 1 transgene and for the content of alkaloid in latex and root. Selected plants showed a differential alkaloid pattern in latex compared to the wild type. In this paper, the results of a plant with an altered alkaloid profile, heritable at least to the T2 generation, is presented. This represents the first example of metabolic engineering of the alkaloid pathways in opium poppy.