- Results as:
- Print view
- Endnote (RIS)
- BibTeX
- Table: CSV | HTML
Publications
Publications
Publications
Publications
Publications
Publications
Publications
Publications
This page was last modified on 27 Jan 2025 27 Jan 2025 .
Research Mission and Profile
Molecular Signal Processing
Bioorganic Chemistry
Biochemistry of Plant Interactions
Cell and Metabolic Biology
Independent Junior Research Groups
Program Center MetaCom
Publications
Good Scientific Practice
Research Funding
Networks and Collaborative Projects
Symposia and Colloquia
Alumni Research Groups
Publications
Environmental quality monitoring of water resources is challenged with providing the basis for safeguarding the environment against adverse biological effects of anthropogenic chemical contamination from diffuse and point sources. While current regulatory efforts focus on monitoring and assessing a few legacy chemicals, many more anthropogenic chemicals can be detected simultaneously in our aquatic resources. However, exposure to chemical mixtures does not necessarily translate into adverse biological effects nor clearly shows whether mitigation measures are needed. Thus, the question which mixtures are present and which have associated combined effects becomes central for defining adequate monitoring and assessment strategies. Here we describe the vision of the international, EU-funded project SOLUTIONS, where three routes are explored to link the occurrence of chemical mixtures at specific sites to the assessment of adverse biological combination effects. First of all, multi-residue target and non-target screening techniques covering a broader range of anticipated chemicals co-occurring in the environment are being developed. By improving sensitivity and detection limits for known bioactive compounds of concern, new analytical chemistry data for multiple components can be obtained and used to characterise priority mixtures. This information on chemical occurrence will be used to predict mixture toxicity and to derive combined effect estimates suitable for advancing environmental quality standards. Secondly, bioanalytical tools will be explored to provide aggregate bioactivity measures integrating all components that produce common (adverse) outcomes even for mixtures of varying compositions. The ambition is to provide comprehensive arrays of effect-based tools and trait-based field observations that link multiple chemical exposures to various environmental protection goals more directly and to provide improved in situ observations for impact assessment of mixtures. Thirdly, effect-directed analysis (EDA) will be applied to identify major drivers of mixture toxicity. Refinements of EDA include the use of statistical approaches with monitoring information for guidance of experimental EDA studies. These three approaches will be explored using case studies at the Danube and Rhine river basins as well as rivers of the Iberian Peninsula. The synthesis of findings will be organised to provide guidance for future solution-oriented environmental monitoring and explore more systematic ways to assess mixture exposures and combination effects in future water quality monitoring.
Publications
The HUPO Proteomics Standards Initiative has developed several standardized data formats to facilitate data sharing in mass spectrometry (MS)-based proteomics. These allow researchers to report their complete results in a unified way. However, at present, there is no format to describe the final qualitative and quantitative results for proteomics and metabolomics experiments in a simple tabular format. Many downstream analysis use cases are only concerned with the final results of an experiment and require an easily accessible format, compatible with tools such as Microsoft Excel or R.We developed the mzTab file format for MS-based proteomics and metabolomics results to meet this need. mzTab is intended as a lightweight supplement to the existing standard XML-based file formats (mzML, mzIdentML, mzQuantML), providing a comprehensive summary, similar in concept to the supplemental material of a scientific publication. mzTab files can contain protein, peptide, and small molecule identifications together with experimental metadata and basic quantitative information. The format is not intended to store the complete experimental evidence but provides mechanisms to report results at different levels of detail. These range from a simple summary of the final results to a representation of the results including the experimental design. This format is ideally suited to make MS-based proteomics and metabolomics results available to a wider biological community outside the field of MS. Several software tools for proteomics and metabolomics have already adapted the format as an output format. The comprehensive mzTab specification document and extensive additional documentation can be found online.
Publications
BackgroundThe ISA-Tab format and software suite have been developed to break the silo effect induced by technology-specific formats for a variety of data types and to better support experimental metadata tracking. Experimentalists seldom use a single technique to monitor biological signals. Providing a multi-purpose, pragmatic and accessible format that abstracts away common constructs for describing I nvestigations, S tudies and A ssays, ISA is increasingly popular. To attract further interest towards the format and extend support to ensure reproducible research and reusable data, we present the Risa package, which delivers a central component to support the ISA format by enabling effortless integration with R, the popular, open source data crunching environment.ResultsThe Risa package bridges the gap between the metadata collection and curation in an ISA-compliant way and the data analysis using the widely used statistical computing environment R. The package offers functionality for: i) parsing ISA-Tab datasets into R objects, ii) augmenting annotation with extra metadata not explicitly stated in the ISA syntax; iii) interfacing with domain specific R packages iv) suggesting potentially useful R packages available in Bioconductor for subsequent processing of the experimental data described in the ISA format; and finally v) saving back to ISA-Tab files augmented with analysis specific metadata from R. We demonstrate these features by presenting use cases for mass spectrometry data and DNA microarray data.ConclusionsThe Risa package is open source (with LGPL license) and freely available through Bioconductor. By making Risa available, we aim to facilitate the task of processing experimental data, encouraging a uniform representation of experimental information and results while delivering tools for ensuring traceability and provenance tracking.Software availabilityThe Risa package is available since Bioconductor 2.11 (version 1.0.0) and version 1.2.1 appeared in Bioconductor 2.12, both along with documentation and examples. The latest version of the code is at the development branch in Bioconductor and can also be accessed from GitHub https://github.com/ISA-tools/Risa, where the issue tracker allows users to report bugs or feature requests.
Publications
The second Critical Assessment of Small Molecule Identification (CASMI) contest took place in 2013. A joint team from the Swiss Federal Institute of Aquatic Science and Technology (Eawag) and Leibniz Institute of Plant Biochemistry (IPB) participated in CASMI 2013 with an automatic workflow-style entry. MOLGEN-MS/MS was used for Category 1, molecular formula calculation, restricted by the information given for each challenge. MetFrag and MetFusion were used for Category 2, structure identification, retrieving candidates from the compound databases KEGG, PubChem and ChemSpider and joining these lists pre-submission. The results from Category 1 were used to guide whether formula or exact mass searches were performed for Category 2. The Category 2 results were impressive considering the database size and automated regime used, although these could not compete with the manual approach of the contest winner. The Category 1 results were affected by large m/z and ppm values in the challenge data, where strategies beyond pure enumeration from other participants were more successful. However, the combination used for the CASMI 2013 entries was extremely useful for developing decision-making criteria for automatic, high throughput general unknown (non-target) identification and for future contests.
Publications
We here review a method of XML data enrichment with controlled vocabularies (CV) in light of end-user compliance. We outline the reasons that made major standard initiatives in proteomics and metabolomics use this data enrichment scheme on omics data in favor of more formal approaches, e.g. description logics (DL) knowledge bases. We show that in comparison to other knowledge representation formalisms, the list of prerequisite skills on the user-side and the learning threshold is significantly lower, making the approachfeasible for bioinformaticians with average skill levels, i.e. basic XML knowledge. Additionally our approach allows to source out the ‘business logics’ from the terminology into external rules. This enables the successive and encapsulated addition of semantics in a flexible way.We feel our approach contributes to increase the amount of potential users, enabling them to participate in a peerproduced standards development process.
Publications
Metabolomic data are frequently acquired using chromatographically coupled mass spectrometry (MS) platforms. For such datasets, the first step in data analysis relies on feature detection, where a feature is defined by a mass and retention time. While a feature typically is derived from a single compound, a spectrum of mass signals is more a more-accurate representation of the mass spectrometric signal for a given metabolite. Here, we report a novel feature grouping method that operates in an unsupervised manner to group signals from MS data into spectra without relying on predictability of the in-source phenomenon. We additionally address a fundamental bottleneck in metabolomics, annotation of MS level signals, by incorporating indiscriminant MS/MS (idMS/MS) data implicitly: feature detection is performed on both MS and idMS/MS data, and feature–feature relationships are determined simultaneously from the MS and idMS/MS data. This approach facilitates identification of metabolites using in-source MS and/or idMS/MS spectra from a single experiment, reduces quantitative analytical variation compared to single-feature measures, and decreases false positive annotations of unpredictable phenomenon as novel compounds. This tool is released as a freely available R package, called RAMClustR, and is sufficiently versatile to group features from any chromatographic-spectrometric platform or feature-finding software.
Publications
0
Preprints
The canonical correlation analysis (CCA) is commonly used to analyze data sets with paired data, e.g. measurements of gene expression and metabolomic intensities of the same experiments. This allows to find interesting relationships between the data sets, e.g. they can be assigned to biological processes. However, it can be difficult to interpret the processes and often the relationships observed are not related to the experimental design but to some unknown parameters.Here we present an extension of the penalized CCA, the supervised penalized approach (spCCA), where the experimental design is used as a third data set and the correlation of the biological data sets with the design data set is maximized to find interpretable and meaningful canonical variables. The spCCA was successfully tested on a data set of Arabidopsis thaliana with gene expression and metabolite intensity measurements and resulted in eight significant canonical variables and their interpretation. We provide an R-package under the GPL license.
Publications
The Critical Assessment of Small Molecule Identification, or CASMI, contest was founded in 2012 to provide scientists with a common open dataset to evaluate their identification methods. In this article, the challenges and solutions for the inaugural CASMI 2012 are presented. The contest was split into four categories corresponding with tasks to determine molecular formula and molecular structure, each from two measurement types, liquid chromatography-high resolution mass spectrometry (LC-HRMS), where preference was given to high mass accuracy data, and gas chromatography-electron impact-mass spectrometry (GC-MS), i.e., unit accuracy data. These challenges were obtained from plant material, environmental samples and reference standards. It was surprisingly difficult to obtain data suitable for a contest, especially for GC-MS data where existing databases are very large. The level of difficulty of the challenges is thus quite varied. In this article, the challenges and the answers are discussed, and recommendations for challenge selection in subsequent CASMI contests are given.
Publications
The Critical Assessment of Small Molecule Identification (CASMI) Contest was founded in 2012 to provide scientists with a common open dataset to evaluate their identification methods. In this review, we summarize the submissions, evaluate procedures and discuss the results. We received five submissions (three external, two internal) for LC–MS Category 1 (best molecular formula) and six submissions (three external, three internal) for LC–MS Category 2 (best molecular structure). No external submissions were received for the GC–MS Categories 3 and 4. The team of Dunn et al. from Birmingham had the most answers in the 1st place for Category 1, while Category 2 was won by H. Oberacher. Despite the low number of participants, the external and internal submissions cover a broad range of identification strategies, including expert knowledge, database searching, automated methods and structure generation. The results of Category 1 show that complementing automated strategies with (manual) expert knowledge was the most successful approach, while no automated method could compete with the power of spectral searching for Category 2—if the challenge was present in a spectral library. Every participant topped at least one challenge, showing that different approaches are still necessary for interpretation diversity.
This page was last modified on 27 Jan 2025 27 Jan 2025 .