- Results as:
- Print view
- Endnote (RIS)
- BibTeX
- Table: CSV | HTML
Printed publications
Printed publications
Printed publications
This page was last modified on 27 Jan 2025 27 Jan 2025 .
Research Mission and Profile
Molecular Signal Processing
Bioorganic Chemistry
Biochemistry of Plant Interactions
Cell and Metabolic Biology
Independent Junior Research Groups
Program Center MetaCom
Publications
Good Scientific Practice
Research Funding
Networks and Collaborative Projects
Symposia and Colloquia
Alumni Research Groups
Printed publications
The transition to flowering is governed by different pathways integrating endogenous and exogenous signals. Here, we evaluated the role of the phytohormone cytokinin (CK) in regulating Arabidopsis thaliana flowering time. By analyzing key mutants in CK metabolism, transport and signalling, we found that the hormone promotes flowering under both long-day (LD) and short-day (SD) conditions, with a stronger impact on flowering under SDs. Genetic analyses indicated that both trans- and cis-zeatin regulate the floral transition, while isopentenyladenine plays a minor role. Blocking CK export from roots and reciprocal grafting experiments revealed that root-derived CK is an important flowering signal. Perception and transmission of the CK flowering signal depended on distinct CK receptors, phosphotransmitter proteins and several B-type response regulators. Further, CK functioned through floral integrators such as OVEREXPRESSION OF CONSTANS1 (SOC1) and components of the age pathway. The CK status of plants affected the levels of the age pathway microRNAs miR156 and miR172. Cytokinin-promoted flowering required the miR156-target SQUAMOSA PROMOTER BINDING PROTEIN-LIKE15 (SPL15) and miR172, and the late-flowering phenotype of LD-grown CK-deficient plants depended on miR172-targeted APETALA2 (AP2)-like genes encoding floral repressors. Collectively, this study shows that CK regulates flowering time through the two-component signaling system and components of the age pathway, providing a genetic framework for future investigations.
Printed publications
The transition to flowering is governed by different pathways integrating endogenous and exogenous signals. Here, we evaluated the role of the phytohormone cytokinin (CK) in regulating Arabidopsis thaliana flowering time. By analyzing key mutants in CK metabolism, transport and signalling, we found that the hormone promotes flowering under both long-day (LD) and short-day (SD) conditions, with a stronger impact on flowering under SDs. Genetic analyses indicated that both trans- and cis-zeatin regulate the floral transition, while isopentenyladenine plays a minor role. Blocking CK export from roots and reciprocal grafting experiments revealed that root-derived CK is an important flowering signal. Perception and transmission of the CK flowering signal depended on distinct CK receptors, phosphotransmitter proteins and several B-type response regulators. Further, CK functioned through floral integrators such as OVEREXPRESSION OF CONSTANS1 (SOC1) and components of the age pathway. The CK status of plants affected the levels of the age pathway microRNAs miR156 and miR172. Cytokinin-promoted flowering required the miR156-target SQUAMOSA PROMOTER BINDING PROTEIN-LIKE15 (SPL15) and miR172, and the late-flowering phenotype of LD-grown CK-deficient plants depended on miR172-targeted APETALA2 (AP2)-like genes encoding floral repressors. Collectively, this study shows that CK regulates flowering time through the two-component signaling system and components of the age pathway, providing a genetic framework for future investigations.
Printed publications
The transition to flowering is governed by different pathways integrating endogenous and exogenous signals. Here, we evaluated the role of the phytohormone cytokinin (CK) in regulating Arabidopsis thaliana flowering time. By analyzing key mutants in CK metabolism, transport and signalling, we found that the hormone promotes flowering under both long-day (LD) and short-day (SD) conditions, with a stronger impact on flowering under SDs. Genetic analyses indicated that both trans- and cis-zeatin regulate the floral transition, while isopentenyladenine plays a minor role. Blocking CK export from roots and reciprocal grafting experiments revealed that root-derived CK is an important flowering signal. Perception and transmission of the CK flowering signal depended on distinct CK receptors, phosphotransmitter proteins and several B-type response regulators. Further, CK functioned through floral integrators such as OVEREXPRESSION OF CONSTANS1 (SOC1) and components of the age pathway. The CK status of plants affected the levels of the age pathway microRNAs miR156 and miR172. Cytokinin-promoted flowering required the miR156-target SQUAMOSA PROMOTER BINDING PROTEIN-LIKE15 (SPL15) and miR172, and the late-flowering phenotype of LD-grown CK-deficient plants depended on miR172-targeted APETALA2 (AP2)-like genes encoding floral repressors. Collectively, this study shows that CK regulates flowering time through the two-component signaling system and components of the age pathway, providing a genetic framework for future investigations.
This page was last modified on 27 Jan 2025 27 Jan 2025 .