- Results as:
- Print view
- Endnote (RIS)
- BibTeX
- Table: CSV | HTML
Publications
Publications
Publications
Publications
Publications
Publications
Publications
Publications
This page was last modified on 27 Jan 2025 27 Jan 2025 .
Research Mission and Profile
Molecular Signal Processing
Bioorganic Chemistry
Biochemistry of Plant Interactions
Cell and Metabolic Biology
Independent Junior Research Groups
Program Center MetaCom
Publications
Good Scientific Practice
Research Funding
Networks and Collaborative Projects
Symposia and Colloquia
Alumni Research Groups
Publications
Plants respond to physical injury, such as that caused by foraging insects, by synthesizing proteins that function in general defense and tissue repair. In tomato plants, one class of wound-responsive genes encodes proteinase inhibitor (pin) proteins shown to block insect feeding. Application of many different factors will induce or inhibit pin gene expression. Ethylene is required in the transduction pathway leading from injury, and ethylene and jasmonates act together to regulate pin gene expression during the wound response.
Publications
In barley leaves, there is a dramatic alteration of gene expression upon treatment with jasmonates leading to the accumulation of newly formed proteins, designated as jasmonate‐inducible proteins (JIPs). In the present study, a new jasmonate‐inducible cDNA, designated pHvJS37, has been isolated by differential screening of a γgt10 cDNA library constructed from mRNA of jasmonate‐treated barley leaf segments. The open reading frame (ORF) encodes a 39‐9 kDa polypeptide which cross‐reacts with antibodies raised against the in vivo JIP‐37. The hydropathic plot suggests that the protein is mainly hydrophilic, containing two hydrophilic domains near the C‐terminus. Database searches did not show any sequence homology of pHv.JS37 to known sequences. Southern analysis revealed at least two genes coding for JIP‐37 which map to the distal portion of the long arm of chromosome 3 and are closely related to genes coding for JIP‐23. The expression pattern of the JIP‐37 genes over time shows differential responses to jasmonate, abscisic acid (ABA), osmotic stress (such as sorbitol treatment) and desiccation stress. No expression was found under salt stress. From experiments using an inhibitor and intermediates of jasmonate synthesis such as α‐linolenic acid and 12‐oxophytodienoic acid, we hypothesize that there is a stress‐induced lipid‐based signalling pathway in which an endogenous rise of jasmonate switches on JIP‐37 gene expression. Using immunocytochemical techniques, JIP‐37 was found to be simultaneously located in the nucleus, the cytoplasm and the vacuoles.
Publications
Lipid bodies are degraded during germination. Whereas some proteins, e.g. oleosins, are synthesized during the formation of lipid bodies of maturating seeds, a new set of proteins, including a specific form of lipoxygenase (LOX; EC 1.13.11.12), is detectable in lipid bodies during the stage of fat degradation in seed germination. In cotyledons of cucumber (Cucumis sativus L.) seedlings at day 4 of germination, the most conspicuous staining with anti-LOX antibodies was observed in the cytosol. At very early stages of germination, however, the LOX form present in large amounts and synthesized preferentially was the lipid-body LOX. This was demonstrated by immunocytochemical staining of cotyledons from 1-h and 24-h-old seedlings: the immunodecoration of sections of 24-h-old seedlings with anti-LOX antiserum showed label exclusively correlated with lipid bodies of around 3 μm in diameter. In accordance, the profile of LOX protein isolated from lipid bodies during various stages of germination showed a maximum at day 1. By measuring biosynthesis of the protein in vivo we demonstrated that the highest rates of synthesis of lipid-body LOX occurred at day 1 of germination. The early and selective appearance of a LOX form associated with lipid bodies at this stage of development is discussed.
Publications
The aims of this study were to demonstrate the endogenous presence of jasmonic acid (JA) in roots, stolons and periderm of new formed tubers, by means of bioassays, ELISA and GC-MS, and to test a microdrop bioassay using the leaflets of potato cuttings cultured in vitro. Our results confirm the existence of JA by bioassays and GC-MS in foliage, stolons, roots and tuber periderm.
Publications
Both jasmonic acid (JA) and its methyl ester, methyl jasmonate (MeJA), are thought to be significant components of the signaling pathway regulating the expression of plant defense genes in response to various stresses. JA and MeJA are plant lipid derivatives synthesized from [alpha]-linolenic acid by a lipoxygenase-mediated oxygenation leading to 13-hydroperoxylinolenic acid, which is subsequently transformed by the action of allene oxide synthase (AOS) and additional modification steps. AOS converts lipoxygenase-derived fatty acid hydroperoxide to allene epoxide, which is the precursor for JA formation. Overexpression of flax AOS cDNA under the regulation of the cauliflower mosaic virus 35S promoter in transgenic potato plants led to an increase in the endogenous level of JA. Transgenic plants had six- to 12-fold higher levels of JA than the nontransformed plants. Increased levels of JA have been observed when potato and tomato plants are mechanically wounded. Under these conditions, the proteinase inhibitor II (pin2) genes are expressed in the leaves. Despite the fact that the transgenic plants had levels of JA similar to those found in nontransgenic wounded plants, pin2 genes were not constitutively expressed in the leaves of these plants. Transgenic plants with increased levels of JA did not show changes in water state or in the expression of water stress-responsive genes. Furthermore, the transgenic plants overexpressing the flax AOS gene, and containing elevated levels of JA, responded to wounding or water stress by a further increase in JA and by activating the expression of either wound- or water stress-inducible genes. Protein gel blot analysis demonstrated that the flax-derived AOS protein accumulated in the chloroplasts of the transgenic plants.
Publications
Barley leaves respond to application of (−)‐jasmonic acid (JA), or its methylester (JM) with the synthesis of abundant proteins, so‐called jasmonate induced proteins (JIPs). Here Western blot analysis is used to show a remarkable increase upon JM treatment of a 100 kDa lipoxygenase (LOX), and the appearance of two new LOX forms of 98 and 92 kDa. The temporal increase of LOX‐100 protein upon JM treatment was clearly distinguishable from the additionally detectable LOX forms. JM‐induced LOX forms in barley leaves were compared with those of Arabidopsis and soybean leaves. Both dicot species showed a similar increase of one LOX upon JM induction, whereas, leaves from soybean responded with additional synthesis of a newly formed LOX of 94 kDa.Using immunofluorescence analysis and isolation of intact chloroplasts, it is demonstrated that JM‐induced LOX forms of barley leaves are exclusively located in the chloroplasts of all chloroplast‐containing cells. Analogous experiments carried out with Arabidopsis and soybean revealed a similar plastidic location of JM‐induced LOX forms in Arabidopsis but a different situation for soybean. In untreated soybean leaves the LOX protein was mainly restricted to vacuoles of paraveinal mesophyll cells. Additionally, LOX forms could be detected in cytoplasm and nuclei of bundle sheath cells. Upon JM treatment cytosolic LOX was detectable in spongy mesophyll cells, too. The intracellular location of JM‐induced LOX is discussed in terms of stress‐related phenomena mediated by JM.
Publications
The effect of osmotically active substances on the alteration of endogenous jasmonates was studied in barley (Hordeum vulgare L. cv. Salome) leaf tissue. Leaf segments were subjected to solutions of d-sorbitol, d-mannitol, polyethylene glycol 6000, sodium chloride, or water as a control. Alterations of endogenous jasmonates were monitored qualitatively and quantitatively using immunoassays. The structures of jasmonates isolated were determined on the basis of authentic substances by capillary gas chromatography-mass spectrometry. The stereochemistry of the conjugates was confirmed by high performance liquid chromatography with diastereoisomeric references. In barley leaves, jasmonic acid and its amino acid conjugates, for example, with valine, leucine, and isoleucine, are naturally occurring jasmonates. In untreated leaf segments, only low levels of these native jasmonates were found. After treatment of the leaf tissues with sorbitol, mannitol, as well as with polyethylene glycol, an increase of both jasmonic acid and its conjugates could be observed, depending on the stress conditions used. In contrast, salt stress was without any stimulating effect on the levels of endogenous jasmonates. From barley leaf segments exposed to sorbitol (1m) for 24 h, jasmonic acid was identified as the major accumulating compound. Jasmonic acid-amino acid conjugates increased likewise upon stress treatment.
Publications
The plant growth substance jasmonic acid and its methyl ester (JA‐Me) induce a set of proteins (jasmonate‐induced proteins, JIPs) when applied to leaf segments of barley (Hordeum vulgare L. cv. Salome). Most of these JIPs could be localized within different cell compartments by using a combination of biochemical and histochemical methods. Isolation and purification of various cell organelles of barley mesophyll cells, the separation of their proteins by one‐dimensional polyacrylamide gel electrophoresis and the identification of the major abundant JIPs by Western blot analysis, as well as the immuno‐gold labelling of JIPs in ultrathin sections were performed to localize JIPs intracellularly. JIP‐23 was found to be in vacuoles, peroxisomes, and in the granular parts of the nucleus as well as within the cytoplasm; JIP‐37 was detected in vacuoles and in the nucleoplasm; JIP‐66 is a cytosolic protein. Some less abundant JIPs were also localized within different cell compartments: JIP‐100 was found within the stromal fraction of chloroplasts; JIP‐70 is present in the peroxisome and the nucleus; JIP‐50 and JIP‐6 accumulate in vacuoles. The location of JIP‐66 and JIP‐6 confirms their possible physiological role deduced from molecular analysis of their cDNA.
This page was last modified on 27 Jan 2025 27 Jan 2025 .

