- Results as:
- Print view
- Endnote (RIS)
- BibTeX
- Table: CSV | HTML
Publications
Publications
Publications
This page was last modified on 27 Jan 2025 27 Jan 2025 .
Research Mission and Profile
Molecular Signal Processing
Bioorganic Chemistry
Biochemistry of Plant Interactions
Cell and Metabolic Biology
Independent Junior Research Groups
Program Center MetaCom
Publications
Good Scientific Practice
Research Funding
Networks and Collaborative Projects
Symposia and Colloquia
Alumni Research Groups
Publications
The exine of angiosperm pollen grains is usually covered by a complex mix of metabolites including pollen-specific hydroxycinnamic acid amides (HCAAs) and flavonoid glycosides. Whereas the biosynthetic pathways resulting in the formation of HCAAs and flavonol glycosides have been characterized, it is unclear, how these compounds are transported to the pollen surface. In this report we provide several lines of evidence that AtNPF2.8, a member of the nitrate/peptide NTR/PTR family of transporters is required for accumulation and transport of pollen-specific flavonol 3-O-sophorosides, characterized by a glycosidic β-1,2-linkage, to the pollen surface of Arabidopsis. Ectopic, transient expression of this flavonol sophoroside transporter, termed AtFST1, fused to green fluorescent protein (GFP) demonstrated localization of AtFST1 at the plasmalemma in epidermal leaf cells of Nicotiana benthamiana whereas the tapetum-specific AtFST1-expression was confirmed by promAtFST1:GFP-reporter lines. In vitro characterization of AtFST1-activity was achieved by microbial uptake assays based on 14C-labeled flavonol glycosides. Finally, rescue of an fst1-line by complementation with a genomic fragment of the AtFST1 gene restored flavonol glycoside accumulation of pollen grains to wild-type levels corroborating the requirement of AtFST1 for transport of flavonol-3-O-sophorosides from the tapetum to the pollen surface.
Publications
Genetic resources for the model plant Arabidopsis comprise mutant lines defective in almost any single gene in reference accession Columbia. However, gene redundancy and/or close linkage often render it extremely laborious or even impossible to isolate a desired line lacking a specific function or set of genes from segregating populations. Therefore, we here evaluated strategies and efficiencies for the inactivation of multiple genes by Cas9-based nucleases and multiplexing. In first attempts, we succeeded in isolating a mutant line carrying a 70 kb deletion, which occurred at a frequency of ~ 1.6% in the T2 generation, through PCR-based screening of numerous individuals. However, we failed to isolate a line lacking Lhcb1 genes, which are present in five copies organized at two loci in the Arabidopsis genome. To improve efficiency of our Cas9-based nuclease system, regulatory sequences controlling Cas9 expression levels and timing were systematically compared. Indeed, use of DD45 and RPS5a promoters improved efficiency of our genome editing system by approximately 25–30-fold in comparison to the previous ubiquitin promoter. Using an optimized genome editing system with RPS5a promoter-driven Cas9, putatively quintuple mutant lines lacking detectable amounts of Lhcb1 protein represented approximately 30% of T1 transformants. These results show how improved genome editing systems facilitate the isolation of complex mutant alleles, previously considered impossible to generate, at high frequency even in a single (T1) generation.
Publications
Methods that enable the construction of recombinant DNA molecules are essential tools for biological research and biotechnology. Golden Gate cloning is used for assembly of multiple DNA fragments in a defined linear order in a recipient vector using a one‐pot assembly procedure. Golden Gate cloning is based on the use of a type IIS restriction enzyme for digestion of the DNA fragments and vector. Because restriction sites for the type IIS enzyme used for assembly must be present at the ends of the DNA fragments and vector but absent from all internal sequences, special care must be taken to prepare DNA fragments and the recipient vector with a structure suitable for assembly by Golden Gate cloning. In this article, protocols are presented for preparation of DNA fragments, modules, and vectors suitable for Golden Gate assembly cloning. Additional protocols are presented for assembly of defined parts in a transcription unit, as well as the stitching together of multiple transcription units into multigene constructs by the modular cloning (MoClo) pipeline.
This page was last modified on 27 Jan 2025 27 Jan 2025 .

