Publikationen Program Center MetaCom
- Results as:
- Print view
- Endnote (RIS)
- BibTeX
- Table: CSV | HTML
Publications
Printed publications
Publications
Publications
Publications
Diese Seite wurde zuletzt am 03 Sep 2024 geändert.
Research Mission and Profile
Molecular Signal Processing
Bioorganic Chemistry
Biochemistry of Plant Interactions
Cell and Metabolic Biology
Independent Junior Research Groups
Program Center MetaCom
Publications
Good Scientific Practice
Research Funding
Networks and Collaborative Projects
Symposia and Colloquia
Alumni Research Groups
Publikationen
Publikationen Program Center MetaCom
Publications
Molecular networking has become a key method to visualize and annotate the chemical space in non-targeted mass spectrometry data. We present feature-based molecular networking (FBMN) as an analysis method in the Global Natural Products Social Molecular Networking (GNPS) infrastructure that builds on chromatographic feature detection and alignment tools. FBMN enables quantitative analysis and resolution of isomers, including from ion mobility spectrometry.
Printed publications
Molecular networking has become a key method used to visualize and annotate the chemical space in non-targeted mass spectrometry-based experiments. However, distinguishing isomeric compounds and quantitative interpretation are currently limited. Therefore, we created Feature-based Molecular Networking (FBMN) as a new analysis method in the Global Natural Products Social Molecular Networking (GNPS) infrastructure. FBMN leverages feature detection and alignment tools to enhance quantitative analyses and isomer distinction, including from ion-mobility spectrometry experiments, in molecular networks.
Publications
The 2017 Dagstuhl Seminar on Computational Proteomics provided an opportunity for a broad discussion on the current state and future directions of the generation and use of peptide tandem mass spectrometry spectral libraries. Their use in proteomics is growing slowly, but there are multiple challenges in the field that must be addressed to further increase the adoption of spectral libraries and related techniques. The primary bottlenecks are the paucity of high quality and comprehensive libraries and the general difficulty of adopting spectral library searching into existing workflows. There are several existing spectral library formats, but none captures a satisfactory level of metadata; therefore, a logical next improvement is to design a more advanced, Proteomics Standards Initiative-approved spectral library format that can encode all of the desired metadata. The group discussed a series of metadata requirements organized into three designations of completeness or quality, tentatively dubbed bronze, silver, and gold. The metadata can be organized at four different levels of granularity: at the collection (library) level, at the individual entry (peptide ion) level, at the peak (fragment ion) level, and at the peak annotation level. Strategies for encoding mass modifications in a consistent manner and the requirement for encoding high-quality and commonly seen but as-yet-unidentified spectra were discussed. The group also discussed related topics, including strategies for comparing two spectra, techniques for generating representative spectra for a library, approaches for selection of optimal signature ions for targeted workflows, and issues surrounding the merging of two or more libraries into one. We present here a review of this field and the challenges that the community must address in order to accelerate the adoption of spectral libraries in routine analysis of proteomics datasets.
Publications
BackgroundThe fourth round of the Critical Assessment of Small Molecule Identification (CASMI) Contest (www.casmi-contest.org) was held in 2016, with two new categories for automated methods. This article covers the 208 challenges in Categories 2 and 3, without and with metadata, from organization, participation, results and post-contest evaluation of CASMI 2016 through to perspectives for future contests and small molecule annotation/identification.ResultsThe Input Output Kernel Regression (CSI:IOKR) machine learning approach performed best in “Category 2: Best Automatic Structural Identification—In Silico Fragmentation Only”, won by Team Brouard with 41% challenge wins. The winner of “Category 3: Best Automatic Structural Identification—Full Information” was Team Kind (MS-FINDER), with 76% challenge wins. The best methods were able to achieve over 30% Top 1 ranks in Category 2, with all methods ranking the correct candidate in the Top 10 in around 50% of challenges. This success rate rose to 70% Top 1 ranks in Category 3, with candidates in the Top 10 in over 80% of the challenges. The machine learning and chemistry-based approaches are shown to perform in complementary ways.ConclusionsThe improvement in (semi-)automated fragmentation methods for small molecule identification has been substantial. The achieved high rates of correct candidates in the Top 1 and Top 10, despite large candidate numbers, open up great possibilities for high-throughput annotation of untargeted analysis for “known unknowns”. As more high quality training data becomes available, the improvements in machine learning methods will likely continue, but the alternative approaches still provide valuable complementary information. Improved integration of experimental context will also improve identification success further for “real life” annotations. The true “unknown unknowns” remain to be evaluated in future CASMI contests.
Publications
The identification of compounds from mass spectrometry (MS) data is still seen as a major bottleneck in the interpretation of MS data. This is particularly the case for the identification of small compounds such as metabolites, where until recently little progress has been made. Here we review the available approaches to annotation and identification of chemical compounds based on electrospray ionization (ESI-MS) data. The methods are not limited to metabolomics applications, but are applicable to any small compounds amenable to MS analysis. Starting with the definition of identification, we focus on the analysis of tandem mass and MS n spectra, which can provide a wealth of structural information. Searching in libraries of reference spectra provides the most reliable source of identification, especially if measured on comparable instruments. We review several choices for the distance functions. The identification without reference spectra is even more challenging, because it requires approaches to interpret tandem mass spectra with regard to the molecular structure. Both commercial and free tools are capable of mining general-purpose compound libraries, and identifying candidate compounds. The holy grail of computational mass spectrometry is the de novo deduction of structure hypotheses for compounds, where method development has only started thus far. In a case study, we apply several of the available methods to the three compounds, kaempferol, reserpine, and verapamil, and investigate whether this results in reliable identifications.
Diese Seite wurde zuletzt am 03 Sep 2024 geändert.

