The IPB has once again been recognized for its exemplary actions in terms of equal opportunity-oriented personnel and organizational policies and has received the TOTAL E-QUALITY certification for the…
The Plant Science Student Conference (PSSC) has been organised by students from the two Leibniz institutes, IPK and IPB, every year for the last 20 years. In this interview, Christina Wäsch (IPK) and…
Recognition of pathogen-associated molecular patterns (PAMPs) induces multiple defense mechanisms to limit pathogen growth. Here, we show that the Arabidopsis thaliana tandem zinc finger protein 9 (TZF9) is phosphorylated by PAMP-responsive mitogen-activated protein kinases (MAPKs) and is required to trigger a full PAMP-triggered immune response. Analysis of a tzf9 mutant revealed attenuation in specific PAMP-triggered reactions such as reactive oxygen species accumulation, MAPK activation and, partially, the expression of several PAMP-responsive genes. In accordance with these weaker PAMP-triggered responses, tzf9 mutant plants exhibit enhanced susceptibility to virulent Pseudomonas syringae pv. tomato DC3000. Visualization of TZF9 localization by fusion to green fluorescent protein revealed cytoplasmic foci that co-localize with marker proteins of processing bodies (P-bodies). This localization pattern is affected by inhibitor treatments that limit mRNA availability (such as cycloheximide or actinomycin D) or block nuclear export (leptomycin B). Coupled with its ability to bind the ribohomopolymers poly(rU) and poly(rG), these results suggest involvement of TZF9 in post-transcriptional regulation, such as mRNA processing or storage pathways, to regulate plant innate immunity.
Publications
Petters, J.; Göbel, C.; Scheel, D.; Rosahl, S.;A Pathogen-Responsive cDNA from Potato Encodes a Protein with Homology to a Phosphate Starvation-Induced PhosphatasePlant Cell Physiol.431049-1053(2002)DOI: 10.1093/pcp/pcf117
Infiltration of potato leaves with the phytopathogenic bacteria Pseudomonas syringae pv. maculicola induces local and systemic defense gene expression as well as increased resistance against subsequent pathogen attacks. By cDNA-AFLP a gene was identified that is activated locally in potato leaves in response to bacterial infiltration and after infection with Phytophthora infestans, the causal agent of late blight disease. The encoded protein has high homology to a phosphate starvation-induced acid phosphatase from tomato. Possibly, decreased phosphate availability after pathogen infection acts as a signal for the activation of the potato phosphatase gene.