The IPB has once again been recognized for its exemplary actions in terms of equal opportunity-oriented personnel and organizational policies and has received the TOTAL E-QUALITY certification for the…
The Plant Science Student Conference (PSSC) has been organised by students from the two Leibniz institutes, IPK and IPB, every year for the last 20 years. In this interview, Christina Wäsch (IPK) and…
Fruiting bodies of the Chilean mushroom Dermocybe nahuelbutenis Garrido & E. Horak (syn.: Cortinariusnahuelbutensis (Garrido & E. Horak) E. Valenz. & G. Moreno) were chemically investigated for the first time andafforded the new dimeric anthraqinone 7,7'-emodinphyscion (1) beside the know anthraquinones dermolutein (2),endocrocin (3), skyrin (4) and the dimeric pre-anthraquinone derivative flavomannin C (5). The chemotaxonomicsignificance of the pigments is discussed.
Publications
Alresly, Z.; Lindequist, U.; Lalk, M.; Porzel, A.; Arnold, N.; Wessjohann, L. A.;Bioactive Triterpenes from the Fungus Piptoporus betulinusRec. Nat. Prod.10103-108(2016)
Phytochemical investigation of the ethyl acetate extract of the fruiting bodies from the basidiomycete Piptoporus betulinus led to the isolation of a new bioactive lanostane triterpene identified as 3 b -acetoxy-16-hydroxy-24-oxo-5α-lanosta-8- ene-21-oic acid (1). In addition, ten known triterpenes, polyporenic acid A (5), polyporenic acid C (4), three derivatives of polyporenic acid A (8, 10, 11), betulinic acid (3), betulin (2), ergosterol peroxide (6), 9,11-dehydroergosterol peroxide (7), and fomefficinic acid (9), were also isolated from the fungus. All isolated compounds were tested for antimicrobial activity against some Gram-positive and Gram-negative bacteria as well as against a fungal strain. The new triterpene and some of the other compounds showed antimicrobial activity against Gram-positive bacteria.
Publications
Caillaud, M.-. C.; Wirthmueller, L.; Fabro, G.; Piquerez, S. J. M.; Asai, S.; Ishaque, N.; Jones, J. D. G.;Mechanisms of Nuclear Suppression of Host Immunity by Effectors from the Arabidopsis Downy Mildew Pathogen Hyaloperonospora arabidopsidis (Hpa)Cold Spring Harb. Symp. Quant. Biol.77285-293(2012)DOI: 10.1101/sqb.2012.77.015115
Filamentous phytopathogens form sophisticated intracellular feeding structures called haustoria in plant cells. Pathogen effectors are likely to play a role in the establishment and maintenance of haustoria additional to their more characterized role of suppressing plant defense. Recent studies suggest that effectors may manipulate host transcription or other nuclear regulatory components for the benefit of pathogen development. However, the specific mechanisms by which these effectors promote susceptibility remain unclear. Of two recent screenings, we identified 15 nuclear-localized Hpa effectors (HaRxLs) that interact directly or indirectly with host nuclear components. When stably expressed in planta, nuclear HaRxLs cause diverse developmental phenotypes highlighting that nuclear effectors might interfere with fundamental plant regulatory mechanisms. Here, we report recent advances in understanding how a pathogen can manipulate nuclear processes in order to cause disease.
Publications
Ali, N. A. A.; Wurster, M.; Arnold, N.; Lindequist, U.; Wessjohann, L.;Essential Oil Composition from Oleogum Resin of Soqotraen Commiphora kuaRec. Nat. Prod.270-75(2008)
The major constituents of the essential oil obtained by hydrodistillation from the oleogum resin of Commiphora kua Vollesen were identified by GC-MS. Sixteen constituents were detected from the essential oil, which constituted about (90.5%) of the total amount. Major constituents of the oil were α- cadinol (33.0%), g -cadinene (22.5%), d -cadinene (17.0%), isocaryophyllene (3.7%), allo-aromadendrene (2.8%), α-muurolene (2.7%), and α-humulene (2.4%). The Oil of Commiphora kua showed moderate antifungal activity against Cladosporium cucumerinum.