The IPB has once again been recognized for its exemplary actions in terms of equal opportunity-oriented personnel and organizational policies and has received the TOTAL E-QUALITY certification for the…
The Plant Science Student Conference (PSSC) has been organised by students from the two Leibniz institutes, IPK and IPB, every year for the last 20 years. In this interview, Christina Wäsch (IPK) and…
Backes, M.; Vössing, T.; Aust, S.; Pienkny, S.; Brandt, W.; Wessjohann, L.; Ley, J. P.;Identification of nitrogen-containing flavonoids as a potent bitter masker supported by combined gustophore modeling and docking studiesHofmann, T., et al., eds.29-34(2014)
Combining (i) a pharmacophore model based on bitter masking actives related to homoeriodictyol and (ii) a homology model of the broadly tuned human bitter receptor hTAS2R10, some new scaffolds for bitter masking compounds based on neoisoflavonoids were deduced. The masking activities of the compounds were predicted via docking of their energy minimized conformers into the putative binding site and subsequent careful analysis of receptor distortion and the number of potential hydrogen bridge bonds. Whereas weak binding candidates showed no masking effect against 500 ppm caffeine, the neoisoflavonoids 3 and 4 and the azaneoisoflavonoids 6 and 7 were able to reduce the bitterness of caffeine by 14 to 34%. Moreover, the new maskers could effectively reduce the bitterness of 100 ppm naringine by about 40-50%.