The IPB has once again been recognized for its exemplary actions in terms of equal opportunity-oriented personnel and organizational policies and has received the TOTAL E-QUALITY certification for the…
The Plant Science Student Conference (PSSC) has been organised by students from the two Leibniz institutes, IPK and IPB, every year for the last 20 years. In this interview, Christina Wäsch (IPK) and…
Kluge, T.; Bette, M.; Rüffer, T.; Bruhn, C.; Wagner, C.; Ströhl, D.; Schmidt, J.; Steinborn, D.;Activation of Acetyl Ligands through Hydrogen Bonds: A New Way to Platinum(II) Complexes Bearing Protonated Iminoacetyl LigandsOrganometallics327090-7106(2013)DOI: 10.1021/om400812w
The dinuclear platina-β-diketone [Pt2{(COMe)2H}2(μ-Cl)2] (1) reacted with 2-pyridyl-functionalized monoximes and with dioximes in the presence of NaOMe to yield oxime–diacetyl platinum(II) complexes [Pt(COMe)2(2-pyCR═NOH)] (R = H, 4a; Me, 4b; Ph, 4c) and [Pt(COMe)2(HON═CR–CR═NOH)] (R/R = Me/Me, 5a; Ph/Ph, 5b; (CH2)4, 5c; NH2/NH2, 5d), respectively. The strong intramolecular O–H···O hydrogen bonds in these complexes give rise to an activation of the acetyl ligands for Schiff-base type reactions, thus forming with primary amines iminoacetyl platinum complexes [Pt(COMe)(CMe═NHR′)(2-pyCR═NO)] (R/R′ = H/Bn, 6a; Me/Bn, 6b; Ph/Bn, 6c; H/CH2CH2Ph, 6d; H/CH2CH═CH2, 6e; Bn = benzyl) and [{Pt(CMe═NHR′)2(ON═CR–CR═NO)}2] (R/R = Me/Me, 7a–d; Ph/Ph, 8a–d; (CH2)4, 9a; R′ = Bn, a; CH2CH2Ph, b; CH2CH═CH2, c; CH2CH2OH, d). The intramolecular N–H···O hydrogen bonds in type 6–9 complexes make clear that protonated iminoacetyl ligands (i.e., aminocarbene ligands) and deprotoanted oxime ligands are present. These complexes could also be obtained in reactions of [Pt(COMe)2(NH2R′)2] (3) with pyridyl-functionalized monoximes and with dioximes where type 4/5 complexes were found to be intermediates. In solution, the bis(iminoacetyl) complexes 7–9 were found to be present as dimers (as also 8a in the solid state) with smaller amounts of monomers. The importance of hydrogen bonds for activation of acetyl ligands was further evidenced by synthesis of complexes [Pt(COMe)2(2-pyCH═NOMe)] (10) and [Pt(COMe)2(HON═CMe–CMe═NOMe)] (11) bearing O-methylated oxime ligands and their reactivty toward amines. The hydrogen-bond activated acetyl and iminoacetyl ligands in type 5, 7, and 8 complexes were found to undergo in CD3OD solutions facile H/D exchange reactions resulting in complexes bearing C(CD3)═O/C(CD3)═NDR′ ligands. The constitution of all complexes was unambiguously confirmed analytically, spectroscopically and in part by single-crystal X-ray diffraction analyses. Structural and NMR parameters as well as DFT calculations gave evidence for relatively strong intramolecular hydrogen bonds.
Publications
Bette, M.; Rüffer, T.; Bruhn, C.; Schmidt, J.; Steinborn, D.;Synthesis, Characterization, and Reactivity of Diacetylplatinum(II) and -platinum(IV) Complexes Bearing κ2- and κ3-Coordinated Scorpionate LigandsOrganometallics313700-3710(2012)DOI: 10.1021/om3001907
Reactions of the dinuclear platina-β-diketone [Pt2{(COR)2H}2(μ-Cl)2] (1) with K[(pz)3BH] and K[(3,5-Me2pz)3BH] (pz = pyrazolyl; 3,5-Me2pz = 3,5-dimethylpyrazolyl) afforded neutral diacetyl(hydrido)platinum(IV) complexes [Pt(COMe)2H{(pz)3BH}] (4a) and [Pt(COMe)2H{(3,5-Me2pz)3BH}] (4b), bearing κ3-bonded tris(pyrazolyl)borate (scorpionate) ligands. These complexes were found to decompose in chloroform solution under formation of the respective chlorido complexes [Pt(COMe)2Cl{(pz)3BH}] (5a) and [Pt(COMe)2Cl{(3,5-Me2pz)3BH}] (5b) as the initial step. Diacetylplatinum(II) complexes with κ2-coordinated scorpionate ligands (K[Pt(COMe)2{(pz)3BH}], 6a; K[Pt(COMe)2{(3,5-Me2pz)3BH}], 6b; K[Pt(COMe)2{(pz)4B}], 7; K[{Pt(COMe)2}2{(pz)4B}], 8) were obtained in ligand exchange reactions of [Pt(COMe)2(NH2Bn)2] (3; Bn = benzyl) with the respective potassium (pyrazolyl)borates. The deprotonation of the hydrido complexes 4 with potassium methoxide led also to the formation of 6. Diacetylplatinum(II) complexes 6a and 7 were found to react in oxidative addition reactions with alkyl halides to yield diacetylplatinum(IV) complexes of the type [Pt(COMe)2R{(pz)3BH)}] (R = Me, 9a; Et, 9b; Bn, 9c) and [Pt(COMe)2R{(pz)4B}] (R = Me, 10a; Et, 10b; Bn, 10c), respectively, with κ3-bonded scorpionate ligands. The identities of all platinum complexes were unambiguously proved by microanalyses or by high-resolution mass spectrometric investigations, by NMR (1H, 13C, 195Pt) and IR spectroscopies, and by single-crystal X-ray diffraction analyses (4a, 5a, 7·(18C6), 9c; 18C6 = 18-crown-6). The reactivity of the complexes is discussed in terms of hemilability of the scorpionate ligands.