The IPB has once again been recognized for its exemplary actions in terms of equal opportunity-oriented personnel and organizational policies and has received the TOTAL E-QUALITY certification for the…
The Plant Science Student Conference (PSSC) has been organised by students from the two Leibniz institutes, IPK and IPB, every year for the last 20 years. In this interview, Christina Wäsch (IPK) and…
Clemens, S.; Bloss, T.; Vess, C.; Neumann, D.; Nies, D. H.; zur Nieden, U.;A Transporter in the Endoplasmic Reticulum of Schizosaccharomyces pombe Cells Mediates Zinc Storage and Differentially Affects Transition Metal ToleranceJ. Biol. Chem.27718215-18221(2002)DOI: 10.1074/jbc.M201031200
The cation diffusion facilitator (CDF) family represents a class of ubiquitous metal transporters. Inactivation of a CDF in Schizosaccharomyces pombe, Zhf, causes drastically different effects on the tolerance toward various metals. A deletion mutant is Zn2+/Co2+-hypersensitive yet displays significantly enhanced Cd2+ and Ni2+ tolerance. Accumulation of zinc, cobalt, and cadmium is reduced in mutant cells. Non-vacuolar zinc content, as measured by analytical electron microscopy, is lower in zhf− cells compared with wild-type cells in the presence of elevated Zn2+concentrations. The protective effect against cadmium toxicity is independent of the phytochelatin detoxification pathway. Phytochelatin synthase-deficient cells show extremely enhanced (about 200-fold) cadmium tolerance when zhf is disrupted. Immunogold labeling indicates endoplasmic reticulum (ER) localization of Zhf. Electron spectroscopic imaging shows that accumulation of zinc coincides with Zhf localization, demonstrating a major role of the ER for metal storage and the involvement of Zhf in cellular zinc homeostasis. Also, these observations indicate that Cd2+ions exert their toxic effects on cellular metabolism in the ER rather than in the cytosol.