The IPB has once again been recognized for its exemplary actions in terms of equal opportunity-oriented personnel and organizational policies and has received the TOTAL E-QUALITY certification for the…
The Plant Science Student Conference (PSSC) has been organised by students from the two Leibniz institutes, IPK and IPB, every year for the last 20 years. In this interview, Christina Wäsch (IPK) and…
Fernández-Niño, M.; Rodríguez-Cubillos, M. J.; Herrera-Rocha, F.; Anzola, J. M.; Cepeda-Hernández, M. L.; Aguirre Mejía, J. L.; Chica, M. J.; Olarte, H. H.; Rodríguez-López, C.; Calderón, D.; Ramírez-Rojas, A.; Del Portillo, P.; Restrepo, S.; González Barrios, A. F.;Dissecting industrial fermentations of fine flavour cocoa through metagenomic analysisSci. Rep.118638(2021)DOI: 10.1038/s41598-021-88048-3
The global demand for fine-flavour cocoa has increased worldwide during the last years. Fine-flavour cocoa offers exceptional quality and unique fruity and floral flavour attributes of high demand by the world\'s elite chocolatiers. Several studies have highlighted the relevance of cocoa fermentation to produce such attributes. Nevertheless, little is known regarding the microbial interactions and biochemistry that lead to the production of these attributes on farms of industrial relevance, where traditional fermentation methods have been pre-standardized and scaled up. In this study, we have used metagenomic approaches to dissect on-farm industrial fermentations of fine-flavour cocoa. Our results revealed the presence of a shared core of nine dominant microorganisms (i.e. Limosilactobacillus fermentum, Saccharomyces cerevisiae, Pestalotiopsis rhododendri, Acetobacter aceti group, Bacillus subtilis group, Weissella ghanensis group, Lactobacillus_uc, Malassezia restricta and Malassezia globosa) between two farms located at completely different agro-ecological zones. Moreover, a community metabolic model was reconstructed and proposed as a tool to further elucidate the interactions among microorganisms and flavour biochemistry. Our work is the first to reveal a core of microorganisms shared among industrial farms, which is an essential step to process engineering aimed to design starter cultures, reducing fermentation times, and controlling the expression of undesirable phenotypes.